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Supplementary Figure 1. Hemodynamic impulse responses.  Deconvolved responses from a representative 
observer for visual areas V1, V2, V4 and MT+. Dark curve, mean response time course averaged over 8 runs in a 
single session. Shaded gray, 95% confidence intervals. 



Supplementary Figure 2. Dimensionality reduction. (A) All visual areas showed a gradual increase in explained 
variance as more principal components were included. Each curve represents the amount of variance explained for 
each visual area. The number of components needed to explain 68% of the variance in the original voxel responses 
was similar across visual areas,  reducing the number of dimensions (number of voxels after stacking all available 
sessions, see Methods) by two orders of magnitude.  (B) After dimensionality reduction, areas with large differences 
in the number of voxels all reduced to a roughly equal number of components. Across visual areas, the mean number 
of components needed to explain 68% of the variance across visual area was 27. 



Supplementary Figure 3. Color reconstruction in all visual cortical areas. Each data point represents the color 
reconstructed for one run, for data combined over all sessions and observers, plotted in CIE L*a*b* space (same 
format as Fig. 5A). Each row corresponds to a different visual area. Actual stimulus color is indicated at the top of 
each column. Reconstruction was more accurate for early visual areas (especially in V1, V2, V3 and V4) than for 
higher visual cortical areas. 



Supplementary Figure 4. Color spaces derived from each visual area. (A) Color spaces derived from the 
covariation, across voxels, in the responses to different stimulus colors, using data combined over all sessions and 
observers (same format as Fig. 6A). In V4, the first two principal components (main source of variation) reveal a 
nearly circular progression (not self-intersecting) through color space, with similar colors evoking the most similar 
responses. VO1 approaches this progression, with only a single outlier. For the remaining areas, there is no clear 
progression through perceptual color space. (B) The dissociation between areas V1 and V4 was evident for 
individual observers. In V1,  all observers showed low progression, while in V4, progressions through color space 
were mostly non-intersecting, with the exception of one observer (O5, rightmost panel).  (C) Clustering and 
progression for each observer, in visual areas V1 and V4. In all five observers,  there was more clustering between 
same-color examples in V1 than V4 (gray dots), while V4 responses showed a more pronounced color space 
progression (black dots). 
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Supplementary Figure 5. Classification accuracies at different visual eccentricities. Each visual area ROI was 
divided into 7 different eccentricities, as defined by retinotopic mapping experiments. Decoding accuracy was 
computed separately for each of these 7 eccentricities. Three of the visual cortical areas exhibited significantly 
higher decoding accuracy at one eccentricity relative to others (V2 : F7,55 = 3.28, p = 0.04; V4 : F7,55 = 2.62, p = 
0.02; LO2 : F7,55 = 3.28, p = 0.04; ANOVA). However, the eccentricities at which decoding accuracies were higher 
differed between these three visual areas The same analysis revealed that V3 showed a small but significant increase 
in decoding accuracies for larger eccentricities (F7,55 = 3.28, p=0.01). Insets show the absolute number of voxels 
used for decoding at each eccentricity. The significantly higher accuracies at particular eccentricities in V4 and LO2 
can be attributed to the fact that there were more voxels contributing to the decoding at these eccentricities (see 
insets) The increase in accuracy for V3 could also have been due to an increase of the available voxels at these 
higher eccentricities. Overall, there was no evidence for any systematic effect of eccentricity (other than that dictated 
by the number of voxels) on decoding accuracies in any of the visual areas, over the range of eccentricities that we 
examined (between ~0.5 and 10 degrees of visual angle).
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Supplementary Figure 6. Classification accuracies for different colors at different visual eccentricities. Similar 
to Sup. Fig. 6,  we examined decoding accuracies at different eccentricities,  now for each color individually. In each 
panel,  each row represents a different eccentricity and each row one of the experimental colors. The diameter of 
each circle represents the decoding accuracy for a particular color. We observed no systematic effect of eccentricity 
on the classifier’s ability to decode any individual color.
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