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Abstract

Psychophysical contrast increment thresholds were compared with neuronal responses, inferred from functional magnetic
resonance imaging (fMRI) to test the hypothesis that contrast discrimination judgements are limited by neuronal signals in early
visual cortical areas. FMRI was used to measure human brain activity as a function of stimulus contrast, in each of several
identifiable visual cortical areas. Contrast increment thresholds were measured for the same stimuli across a range of baseline
contrasts using a temporal 2AFC paradigm. FMRI responses and psychophysical measurements were compared by assuming that:
(1) fMRI responses are proportional to local average neuronal activity; (2) subjects choose the stimulus interval that evoked the
greater average neuronal activity; and (3) variability in the observer’s psychophysical judgements was due to additive (IID) noise.
With these assumptions, FMRI responses in visual areas V1, V2d, V3d and V3A were found to be consistent with the
psychophysical judgements, i.e. a contrast increment was detected when the fMRI responses in each of these brain areas increased
by a criterion amount. Thus, the pooled activity of large numbers of neurons can reasonably well predict behavioral performance.
The data also suggest that contrast gain in early visual cortex depends systematically on spatial frequency. © 1998 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

For more than 30 years, psychophysical studies of
visual pattern perception have paralleled research on
the neurophysiological response properties of neurons
in the visual cortex. The prevailing view has been that
psychophysical judgements about pattern discrimina-
tion and pattern appearance are limited by neuronal
signals in early visual cortical areas (e.g. V1). The
response properties of the underlying neuronal mecha-
nisms have been estimated by fitting models of neu-
ronal processing to the psychophysical measurements
(Graham, 1989).

We aimed to establish a firmer link between pattern
discrimination and neurophysiology. Specifically, we
used functional magnetic resonance imaging (fMRI) to
measure brain activity as a function of stimulus con-
trast, while subjects made contrast discrimination
judgements. Our results demonstrate that neuronal sig-

nals appropriate for limiting contrast discrimination
performance are indeed present as early as V1.

Contrast discrimination thresholds are measured by
finding the increment in stimulus contrast that can be
reliably detected above some baseline contrast. The
increment threshold as a function of baseline contrast,
called a threshold versus contrast or TvC function,
forms a ‘dipper shape’. The contrast increment above a
zero baseline contrast is called the absolute threshold.
As the baseline contrast increases above zero, the incre-
ment threshold drops below the absolute threshold.
This effect is called negative masking, facilitation, or
the pedestal effect (Nachmias & Sansbury, 1974;
Stromeyer & Klein, 1974; Tolhurst & Barfield, 1977;
Legge & Foley, 1980). As the baseline contrast in-
creases beyond the range of facilitation, the increment
threshold increases well above the absolute threshold.
This increase in increment thresholds for high baseline
contrasts is called masking.

A popular class of models predict the form of the
TvC function by postulating an underlying neuronal
contrast–response function that forms an S-shaped
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nonlinearity. According to these models an increment
in contrast can be detected only when the increment
in the neuronal response increases by some criterion
amount (Legge & Foley, 1980; Foley & Yang, 1991;
Foley, 1994; Foley & Boynton, 1994; Teo & Heeger,
1994, 1995). The shape of the TvC function is there-
fore a simple consequence of the shape of the neu-
ronal contrast–response function; increment
thresholds are inversely related to the slope of the
neuronal contrast–response function. The expansive
portion of the nonlinearity at low contrasts predicts
the facilitation effect, while the compressive nonlin-
earity at high contrasts predicts the masking effect.

Typical V1 neurons show an S-shaped monotonic
contrast–response function. That is, with increasing
contrast, the neuronal response is expansive at low
contrasts and then compressive for higher contrasts
(Dean, 1981b; Albrecht & Hamilton, 1982; Sclar,
Maunsell & Lennie, 1990; Carandini, Heeger &
Movshon, 1997). Thus, area V1 is a natural place to
search for the neuronal correlate of contrast incre-
ment thresholds.

We tested whether contrast discrimination
thresholds are consistent with fMRI contrast–re-
sponse measurements. In the psychophysical experi-
ments, each trial consisted of two stimulus intervals; a
baseline contrast was shown in one interval and a
slightly higher contrast was shown in the other inter-
val. Observers chose the interval which appeared to
have higher contrast. The contrast increment was ad-
justed from trial to trial, until it was just barely de-
tectable. In the fMRI experiments, we measured
response as a function of stimulus contrast for the
same stimuli.

We made three assumptions about how neuronal
activity is pooled to yield psychophysical and fMRI
responses. First, we assumed that the fMRI responses
are proportional to the local average neuronal activ-
ity. Second, we assumed that that the observers’ psy-
chophysical decision rule was to choose the stimulus
interval that evoked the greater average neuronal ac-
tivity. Third, we assumed that the variability in the
observer’s psychophysical judgements was due to ad-
ditive, independent and identically distributed (IID)
noise. With these assumptions, we can establish a di-
rect link between fMRI responses and psychophysical
responses. In particular, the contrast increment should
be detected when the fMRI responses (in the appro-
priate brain area) increase by a criterion amount.

2. Methods

Blood oxygenation level-dependent (BOLD) func-
tional magnetic resonance imaging (Kwong, Belliveau,
Chesler, Goldberg, Weiskoff, Poncelet et al., 1992;

Ogawa, Lee, Kay & Tank, 1990; Ogawa, Tank,
Menon, Ellermann, Kim, Merkle et al., 1992; Mose-
ley & Glover, 1995) was used to measure brain activ-
ity in response to visual stimuli. Each subject
participated in several scanning sessions: one to ob-
tain a standard, high-resolution, anatomical scan, one
to define the early visual areas including V1, and at
least four to measure fMRI contrast–response func-
tions. Psychophysical contrast increment thresholds
(TvC curves) were measured in separate sessions.

2.1. Subjects

Two of the authors (gmb and djh) served as sub-
jects for these experiments. Both subjects have normal
acuity and are experienced psychophysical observers.
The same two subjects served in both behavioral and
in imaging experiments to allow a direct comparison
between behavioral and brain measurements.

2.2. Visual stimuli

Stimuli were contrast-reversing (8 Hz) plaids (sums
of orthogonal sine wave gratings) of either 0.5 or 2
cycles/°, restricted to a peripheral annulus (inner ra-
dius, 5°; outer radius, 7°) of the visual field. The
mean luminance was 36 cd/m2. Stimulus contrast was
defined in the usual way as the peak luminance of the
stimulus minus the minimum luminance, divided by
twice the mean. Restricting the stimulus to a limited
range of eccentricities was important because psycho-
physical contrast thresholds (Robson & Graham,
1981) and the preferred spatial frequencies of cortical
neurons (DeValois, Albrecht & Thorell, 1982) both
depend on eccentricity. We chose a peripheral an-
nulus rather than a central disk of eccentricities be-
cause it is difficult to identify the boundaries between
the cortical visual areas for the central part of the
visual field.

Visual stimuli were displayed on a screen, made of
rear-projection material, positioned 127 cm away
from the viewer at the opening of the bore of the
magnet near the subject’s knees. The stimuli were
generated on a Macintosh computer that transmitted
a high resolution RGB signal to a Sanyo PLC300M
LCD video projector (66.7 Hz refresh). A special pur-
pose lens focused the image on the projection screen.

The subject, lying on his back, looked directly up
into an angled mirror to see the rear-projection
screen. The display subtended 14×14° of visual an-
gle. A small high contrast square in the center of the
stimulus served as a fixation mark to minimize effects
of eye movements. A bite bar was used to stabilize
the subject’s head.
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2.3. Functional MRI data acquisition

FMRI contrast–response functions were measured
for each of two spatial frequencies (0.5 and 2.0 c/°) and
at each of six baseline contrasts. Responses to each of
the 12 stimulus conditions (six contrasts, two spatial
frequencies) were measured in separate scans, and each
measurement was repeated two or three times on each
of the two subjects.

Each scan lasted 254 s. Visual stimuli were presented
and subjects’ responses were recorded during a series of
test periods (see below), each of which lasted 18 s. The
test periods alternated seven times (once every 36 s)
with blank periods. A uniform gray field (36 cd/m2,
equal to the mean luminance of the test stimuli) was
presented during these blank periods. The first test/
blank cycle (i.e. the first 36 s) of data were discarded to
minimize effects of magnetic saturation and visual
adaptation. During the remaining 216 s of each scan, a
sequence of 72 functional images (one every 3 s) was
recorded for each of eight slices through the occipital
lobe of the brain.

Subjects performed a contrast discrimination task
throughout each of the test periods. Specifically, each
18 s test period consisted of nine trials (2 s each).
During each trial, two 0.5 s stimuli (one slightly higher
contrast than the other) were presented, separated by a
brief blank interval, and followed by a response inter-
val. Subjects indicated which stimulus appeared to have
the higher contrast by pressing one of two keys on a
response pad specially modified for use in the MR
scanner (Resonance Technologies, Northridge, CA).

The two stimulus contrasts were fixed for each 254 s
scan. The contrast increment was chosen based on
separate psychophysical measurements (see below) so
that the subjects would perform with an accuracy of
approximately 79% correct. Having the subjects per-
form the discrimination task in this way during the scan
helped to control for their ‘attentional state’. Visual
feedback (‘yes’, ‘no’, or ‘XXX’ for no response) was
displayed just below the fixation point after each re-
sponse to keep the subjects motivated. A uniform gray
field was presented during both the blank and response
intervals. Alternating brief stimulus presentations with
blank intervals in this way also minimized any effects of
contrast–dependent adaptation by visual neurons.

Imaging was performed on a standard clinical GE 1.5
T Signa scanner with a 5 inch diameter surface coil
placed at the back of the head. We used a T2*-sensitive
gradient recalled echo pulse sequence with a spiral
readout (Noll, Cohen, Meyer & Schneider, 1995;
Glover & Lai, 1998). Parameters for the protocol were:
1500 TR (repetition time), 40 ms TE (echo time), 90°
FA (flip angle), 2 interleaves, inplane resolution=
1.02× l.02mm, slice thickness=4mm. In all experi-
ments, eight adjacent planes of fMRI data were

collected in a psuedo-coronal orientation perpendicular
to the calcarine sulcus with the lowest slice near the
occipital pole. Structural images were acquired in the
same slices as the functional images using a T1-
weighted spin echo pulse sequence (500 ms TR, mini-
mum TE, 90 FA) at the same resolution as the
functional scans. These inplane anatomical images were
registered to a high-resolution, anatomical MRI scan of
the subject’s brain so that all of the fMRI data from a
given subject were aligned to a common three-dimen-
sional coordinate frame.

2.4. Functional MRI data analysis

The fMRI process produces a 256×256×8 volume
of data every 3 s. For a given fMRI voxel (sample point
in the 256×256×8 volume), the image intensity com-
prises a time-series of data. This time-series was peri-
odic with a period equal to the 36 s stimulus temporal
period. We calculated the average amplitude and tem-
poral phase of the fMRI time-series for a given condi-
tion by: (1) removing any linear trend in the time-series;
(2) dividing each voxel’s time-series by the voxel’s mean
intensity; (3) selecting a set of voxels corresponding to
a particular brain region, (e.g. V1, see below); and then
(4) calculating the amplitude and phase of the (36 s
period) sinusoid that best fit the time-series for each
voxel.

To improve signal-to-noise in the contrast–response
measurements, the least responsive voxels (e.g. those
that contained a high proportion of white matter or
those that did not correspond to the 5–7° stimulus
annulus) were removed based on a reference scan that
was run as the first scan at the beginning of each
session. The reference stimulus was a contrast-reversing
8.3 Hz, 1 cycle/° checkerboard restricted to the same
5–7° annulus. This stimulus was alternated every 36 s
with a mid-gray field of equal mean luminance. Voxels
with correlations above a liberal threshold (r \0.23
with 0–9 s time lag) were included in further analyses.
This correlation threshold of r\0.23 corresponds to a
PB0.025 (one-tailed) significance level with n=72
given that the 72 points in the time series are indepen-
dent. The independence assumption is obviously vio-
lated in an fMRI time series due to the sluggishness of
the hemodynamic response, and so the threshold would
have to be raised considerably to achieve the desired
significance level. However, this threshold was chosen
only to remove the least responsive voxels from the
analysis, not to test whether the stimulus was evoking
activity.

The final fMRI response was calculated by
combining the amplitudes and phases from the remain-
ing voxels. First, we computed the vector mean across
these voxels. Secondly, for each subject, the responses
to the reference scans were averaged across scanning
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sessions to obtain the average reference phase. Finally,
the fMRI response was calculated by projecting the
vector mean onto a unit vector with the average refer-
ence phase. Assuming that the noise in our measure-
ments has random phase, the resulting fMRI response
is an unbiased estimate of the true (noise-free) response
amplitude, and its probability distribution is unimodal
and symmetric.

The S.D. of the random-phase noise in the fMRI
responses was estimated separately for each scan. Be-
cause the noise in the fMR images was highly corre-
lated in adjacent voxels, it would have been incorrect to
simply compute the S.D. of the responses across voxels
and divide by the square root of the number of voxels.
Instead, we noted that the Fourier amplitude spectrum
of the time series was a smooth function of frequency,
and we used the components that were not driven by
the stimulus to estimate the noise in the stimulus-driven
responses. Fig. 1A, for example, plots the time series
(averaged within V1) in response to a 50% contrast
stimulus. Fig. 1B plots the amplitude of the Fourier

transform of this time series. Triangles correspond to
the (6 cycles/scan) signal frequency along with its
higher harmonics (integer multiplies of 6 cycles/scan).
An exponential function was fit to the other (nonhar-
monic) frequency components (filled circles), and as
illustrated in Fig. 1B, the fitted value at the signal
frequency was used to estimate response variability (si

in Eq. (2) below). Assuming again that the noise in our
measurements has random phase, the resulting si is an
unbiased estimate of the S.D. of the noise.

We believe that the variability in our fMRI measure-
ments is dominated by factors other than neuronal
noise for the following four reasons. First, unlike single
neurons whose response variance is proportional to the
mean response, our noise estimates are largely invariant
with respect to the on-harmonic (neuronally driven)
signal. Second, our measured noise spectral power dis-
tribution is not consistent with that inferred from esti-
mates of the hemodynamic response function (Boynton,
Engel, Glover & Heeger, 1996). Third, there are many
other potential sources of noise, including hemody-
namic response variability and noise in the MR imag-
ing process. Finally, the expected variance of the
neuronal noise, after averaging across millions of neu-
rons and over several minutes, should be much smaller
than our observed variance.

2.5. Defining 6isual brain areas

The fMRI data were analyzed separately in each of
several retinotopically-organized visual cortical areas
(V1, V2v, V2d, V3v, V3d, V3A, and V4v). FMRI
methods for defining these areas are now well estab-
lished (Schneider, Noll & Cohen, 1993; Engel, Rumel-
hart, Wandell, Lee, Glover, Chichilnisky et al., 1994;
Sereno, Dale, reppas, Kwong, Belliveau, Brady et al.,
1995; DeYoe, Carman, Bandettini, Glickman, Wieser,
Cox et al., 1996; Engel, Glover & Wandell, 1997). The
polar angle component of the retinotopic map was
measured by recording fMRI responses as a stimulus
slowly rotated (like the second hand of a clock) in the
visual field. The stimulus was shaped like a wedge that
covered 1/8th of the screen, and was filled with con-
trast-reversing black and white checks (8.4 Hz flicker
rate). The stimulus evoked a traveling wave of neuronal
activity in the retinotopically-organized visual brain
areas. In early visual areas, reversals in the polar angle
dimension of the retinotopic layout occur at the area
boundaries. For example, as one moves an electrode
through a monkey brain from central V1 towards the
V2 border, the receptive field centers change from the
horizontal towards the vertical meridian. As one crosses
the border from V1 and continues into V2, the recep-
tive field centers move from the vertical meridian back
towards the horizontal meridian. Similar reversals oc-
cur at the V2/V3, V3d/V3A, and V3v/V4v borders

Fig. 1. Response variability. (A) Time series averaged within V1 from
subject djh for a 50% contrast stimulus, superimposed with the best
fitting sinusoid (dashed line). (B) Amplitude of the Fourier transform
of (A). The signal frequency (6 cycles/scan) and its harmonics are
represented by triangles. Filled circles correspond to nonharmonic
frequencies. Smooth curve is an exponential function fit that was used
to estimate the noise amplitude at the signal frequency (dashed line).
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(VanEssen, Felleman, DeYoe, Olavarria & Knierim,
1990). The radial component of the retinotopic map
was likewise measured by recording fMRI responses as
a ring stimulus (covering 1/8th of the screen, and filled
with contrast-reversing checks) slowly expanded from
the fixation point into the periphery.

To visualize these retinotopy measurements, a high-
resolution MRI of each subject’s brain was computa-
tionally flattened. First, the gray matter was identified
from a high-resolution, anatomical MRI scan, using a
Bayesian classification algorithm (Teo, Sapiro & Wan-
dell, 1997). Second, a multidimensional scaling al-
gorithm was used to flatten the cortical sheet (Engel,
Glover & Wandell, 1997). The software for segmen-
ting the gray matter and for flattening the cortical
surface are available on the World Wide Web at
http://white.stanford.edu. Third, the retinotopy mea-
surements were projected into the flattened representa-
tion. Fourth, the locations of visual area boundaries
were drawn by hand on the flattened representation
along the reversals in the polar angle (rotating wedge)
component of the retinotopic map, and orthogonal to
the radial (expanding ring) component of the
retinotopic map. The locations of the boundaries can
be determined reliably in this way, across repeated
experiments, to within an error of 2–4 mm (Engel,
Glover & Wandell, 1997). We tried to be conservative
in this process and select the areas slightly within the
area boundaries. Finally, the selected areas were pro-
jected back to three-dimensional coordinates within the
gray matter of the brain.

These procedures to define the various visual brain
areas were performed only once per subject. Because
the fMRI data recorded during successive scanning
sessions were all aligned to a common three-dimen-
sional coordinate frame (see above), we could localize
the previously labeled visual areas across scanning
sessions.

2.6. Psychophysical methods

Psychophysical contrast increment thresholds were
measured in separate sessions prior to the fMRI exper-
iments. To ensure that the stimulus conditions were
identical for both the psychophysical and fMRI experi-
ments, we used the same peripheral plaid stimuli dis-
played in the same way with the subjects lying in the
MR scanner.

Contrast increment thresholds were measured for
each of the two spatial frequencies, and at each of four
or five baseline contrasts, using a two-interval forced
choice design. As in the fMRI experiments, each trial
consisted of two 1/2 s stimulus presentations (a baseline
stimulus, and a test stimulus of slightly higher contrast
than the baseline), that were separated by a brief blank
interval, and followed by a response interval. Subjects

indicated which stimulus appeared to have the higher
contrast by pressing one of two keys on a response pad.
A uniform gray field was presented during both the
blank and response intervals, the fixation point flashed
briefly before each stimulus presentation, and visual
feedback was provided after each response. Subjects
were allowed to take as much time as they desired to
respond, although typically they responded at about the
same pace as in the fMRI experiments.

The contrast of the test stimulus was adjusted, from
trial to trial, using a double random staircase proce-
dure. After three correct responses in a given staircase
the test contrast was decreased (i.e. moved closer to
that of the baseline stimulus) making the task more
difficult. After one incorrect response, the test contrast
was increased making the task easier. The two stair-
cases were randomly interleaved and contained a total
of 50 trials.

The resulting psychometric function was fit with a
Weibull function using a maximum likelihood fitting
procedure Watson, 1979. The contrast increment
threshold was defined as the contrast that yielded 79%
correct performance, that is the performance level to
which the 3-down, 1-up staircase converges. We report
the mean of three repeats of each condition. We
quantified the variability in the psychophysical data as
the S.E. of the mean of the three repeats, rather than
using the individual psychometric functions, because we
were primarily concerned with reliability across re-
peated measures given that the fMRI data that were
collected in separate experimental sessions.

2.7. Comparing fMRI and psychophysical
measurements

FMRI contrast–response functions were fit using the
following equation:

R. (C)=a
Cp+q

Cq+sq (1)

where R is response and C is stimulus contrast. The
other symbols determine the shape of the contrast–re-
sponse function. A typical contrast–response function
is shown in Fig. 2A. When C�s, the function behaves
like a simple power function with an exponent of p.
When C�s, the function behaves like a power func-
tion with an exponent of p+q. Typical values of p and
q are 0.3 and 2, respectively, so that the function is
expansive (C2.3) at low contrasts and compressive (C0.3)
at high contrasts.

The function in Eq. (1) was fit to the fMRI data by
performing a numerical search to minimize the follow-
ing weighted least-squares error function:

X2=%
i

[R. i−Ri ]2

si
2 (2)
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Fig. 2. Illustration of the link between neuronal contrast–response
functions and psychophysical TvC curves. (A) A typical contrast–re-
sponse function, as given by Eq. (1) with parameters: a=1.0; p=
0.40; q=1.5; s=15. (B) TvC curve predicted from the
contrast–response function in (A) according to Eq. (3) with DR=
0.05. The thin lines in (A) and the filled circles in (B) illustrate an
example of the relationship between the two curves (see text).

where DC is the threshold contrast increment and DR is
the criterion response increment. Eq. (3) can be solved
numerically for a variety of baseline contrasts (C) to
produce a predicted TvC curve.

Fig. 2 B plots a TvC curve predic:ted from the con-
trast–response function in Fig. 2A, according to Eq.
(3), with DR=0.05. The thin lines in Fig. 2A and the
filled circles in Fig. 2B illustrate examples of the rela-
tionship between the two curves. For baseline contrasts
of 20 and 70%, the contrast increments must be about
3 and 9%, respectively, to evoke the criterion response
increment.

The relationship between the contrast–response func-
tion plotted in Fig. 2A and the TvC curve plotted in
Fig. 2 B can be approximated by noting that:

dR
dC
:

DR
DC

(4)

Hence the TvC curve is approximately proportional to
1 over the derivative of the contrast–response function:

DC:DR
1

dR/dC
(5)

The relative values of s, p, and q determine the shape
of the TvC curve and the criterion response, DR, scales
the TvC curve. In particular, the predicted contrast
thresholds increase with baseline contrast for high con-
trasts (C�s) where the contrast–response function is
compressive. At low contrasts (C�s) where the con-
trast–response function is expansive, on the other
hand, the predicted contrast thresholds decrease with
increases in baseline contrast. Changing DR shifts the
curve vertically on the log scale, e.g. doubling DR will
roughly double the contrast thresholds according to Eq.
(5). For a fixed value of DR, the absolute threshold (at
zero baseline contrast) is determined by s.

Predicted TvC curves were fit to the psychophysical
data using Eq. (2), as described above. Simultaneous
fits to the fMRI and psychophysical data were per-
formed by minimizing the sum of the respective errors;
dividing by the variance in the denominator (Eq. (2))
compensated for the relative variability in the two data
sets.

3. Results

3.1. Contrast–response functions in V1

Fig. 3A and 3B plot fMRI responses as a function of
stimulus contrast for visual area V1 in subject djh. The
two graphs correspond to the two different spatial
frequencies. The smooth curves are the simultaneous fit
to both fMRI and psychophysical data (see below).
Each data point is the result of a single scan. The
results in Fig. 3 A,B illustrate the reliability of our

where Ri is the measured response to the ith scan and
R. i is the predicted response for that stimulus condition.
The responses for each stimulus condition were mea-
sured repeatedly (two to three times); each repeat con-
tributed separately to the summation in the error
function. The si

2 in the denominator is an estimate of
variance of the response (see above), and was included
for two reasons. First, the predicted responses would
most closely match data points with the smallest esti-
mated variance. Second, by compensating for the rela-
tive variability in the two (fMRI and psychophysical)
data sets, the fits to each data set could be compared on
equal footing (see below).

Psychophysical contrast increment thresholds can be
predicted from a contrast–response function (Eq. (1))
by assuming that a contrast increment is detectable
when the response increases by a criterion amount (see
Introduction). That is, the predicted threshold, DC,
satisfies:

R. (C+DC)−R. (C)=DR, (3)
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Fig. 3. (A) and (B) FMRI responses for subject djh in visual area V1 as a function of stimulus contrast at 0.5 c/° and 2.0 c/°, respectively. Each
data point is the result of a single scan. Two slightly different contrasts were displayed during the test periods of each scan (see Methods). The
x-axis value of each data point is plotted at the average of these two contrasts. (C) Psychophysical TvC data at the same two spatial frequencies.
Smooth curves were fit to both fMRI and psychophysical data, simultaneously at both spatial frequencies.

measurements. The two repeats of each stimulus condi-
tion, collected in separate scanning sessions, usually
give very nearly the same response to within the esti-
mated measurement error indicated by the error bars
(except for one aberrant data point discussed further
below). Note that, unlike Fig. 2 A, contrast is plotted
on a logarithmic axis.

3.2. Threshold 6ersus contrast (T6C) cur6es

Fig. 3C plots the psychophysical TvC curves for
subject djh. The smooth curves are the simultaneous fit
to both fMRI responses in V1 and the psychophysical
data. The thresholds initially drop at low contrasts and
then rise for higher contrasts, forming the familiar
‘dipper function’ commonly reported in masking exper-
iments Nachmias & Sansbury, 1974.

3.3. Comparison of psychophysical and fMRI
measurements in V1

The two (fMRI and psychophysics) data sets, includ-
ing results from both spatial frequencies, were fit simul-

taneously using a total of six parameters. Fits to both
spatial frequencies shared the common parameters from
Eq. (1) of s, p, and q. Two values of sigma, s0.5 and
s2.0, were allowed to differ for the two spatial frequen-
cies. Finally, a single criterion response value, DR,
allowed increment thresholds to be predicted from con-
trast–response functions using Eq. (3). The fits are
impressive (smooth curves pass through nearly all of
the error bars), i.e. the fMRI and psychophysical data
agree.

Fig. 4 shows results for the second subject, gmb. Fig.
4A,B plot the fMRI contrast–response data from V1
and Fig. 4C plots the psychophysical TvC data. The
smooth curves are again a simultaneous fit to both the
fMRI and the psychophysics, at both spatial frequen-
cies. The fits for this second subject are also reasonably
good; the model predictions pass through most of the
error bars.

Parameter values for the best simultaneous fits for
subjects djh and gmb are provided in Tables 1 and 2,
respectively. The best-fit exponents (that relate the
slopes of the two curves) are the critical parameters that
make the two data sets agree. Masking typically occurs
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Fig. 4. FMRI responses in V1 and TvC data for subject gmb (same format as Fig. 3).

only for background contrasts well above detection
threshold. In this regime, the contrast increment
thresholds increase with background contrast as a
power function, with an exponent of about 0.5–0.7
(Legge & Foley, 1980; Legge, 1981). This implies an
exponent of 0.3–0.5 in the underlying neuronal con-
trast–response functions. Our best-fit parameter values
likewise imply a power function masking regime when
C�s with p:0.3. Facilitation typically occurs only
for low background contrasts. Psychophysically-based
estimates of the underlying neuronal contrast–response
function suggest an expansive regime with an exponent
of about 2.5–2.7 (Foley, 1994). Our best-fit parameter
values likewise imply an expansive facilitation regime
when C�s with p+q:1.6; the difference between
this number and previous results may be due to the
various methodological differences (e.g. stimulus size,
temporal frequency etc.).

The best-fit parameter values of DR are �0.03,
meaning that two stimuli producing fMRI responses
that differ by this amount will be distinguishable by an
observer approximately 79% of the time, regardless of
the baseline contrast.

To further test the correspondence between V1 neu-
ronal activity and psychophysical performance, we de-
termined the best-fitting parameter values to Eq. (1)

separately for the fMRI data and the psychophysical
data. These values for subjects djh and gmb are pro-
vided in Tables 3 and 4, respectively. The values of the
p and q parameter estimates are similar across the two
experiments. There is less agreement in the s parame-
ters across experiments.

A statistical bootstrapping procedure (Efron & Tib-
shirani, 1993) was used to test if there was a significant
difference between the parameter values fit to the two
(fMRI and psychophysics) data sets. The procedure
consisted of three steps: (1) randomly sample values
from the Gaussian distributions defined by the means
and standard deviations of the responses to each con-
trast level; (2) fit the resampled data with Eq. (1); and
(3) record the fitted parameter values. These three steps
were repeated 200 times to generate bootstrapped prob-
ability distributions of the parameter values. Fig. 5
plots the bootstrapped distributions from the fMRI
data (X’s) superimposed with the bootstrapped distri-
butions from the psychophysical data (filled O’s). The
distributions for the p and q parameters largely overlap,
i.e. the parameter values estimated from two data sets
(fMRI and psychophysics) are consistent with one an-
other. The bootstrapped distributions for the s

parameters do not overlap substantially. However, we
suspect that the fMRI data may not have constrained
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Table 1
Parameter values fit jointly to psychophysical and fMRI data for subject djh

x2 fMRI Total x2Area a s0.5 s2.0 p q DR x2Tvc

9.22 74.86V1 0.99 1.55 2.58 0.33 1.55 84.080.02
58.307.18V2d 65.490.82 0.021.53 2.31 0.34 1.62

0.02 3.89 57.83V3d 61.730.67 1.47 2.35 0.31 1.66
0.01 8.41 80.46V3A 0.48 0.60 1.23 88.880.22 5.19

these parameters particularly well because they are
determined primarily by the responses at the lowest
contrasts. This suspicion is reinforced by the fact that
many of the fMRI-bootstrapped s values equal zero,
the lower bound allowed by the fitting procedure.

There is one aberrant data point in subject djh’s
contrast–response function at 2 c/° (Fig. 3B) at a
contrast of around 3% which is clearly much higher
than neighboring points. A re-analysis of the simulta-
neous fits without this data point shows a better good-
ness of fit but the parameter values do not change
substantially, and hence our conclusions do not change.

3.4. Facilitation

Contrast discrimination thresholds decrease below
absolute threshold for low baseline contrasts. There are
two models that can predict this facilitation effect. The
model that we have adopted in Eqs. (1) and (3) predicts
facilitation through a combination of: (1) an expansive
contrast–response function, and (2) the assumption
that equal differences in responses are equally discrim-
inable across the entire range of contrasts. The second
model is that of Pelli (1985), the uncertainty model
which assumes a psychophysical decision rule based on
the maximum of the responses of each individual neu-
ron to each of the two stimuli. For stimuli near abso-
lute threshold, the maximum response may come (by
chance, due to noise) from any of a very large number
of neurons. Most of these neurons are not driven by the
stimuli because they have inappropriate receptive fields
or because they are tuned for inappropriate spatial
frequencies, orientations, etc. They thus contribute only
noise to the decision. Once above absolute threshold,
the maximum response may come only from those
neurons that are driven by the stimulus, and hence the

noise is reduced. Both models can predict facilitation at
low contrasts equally well (Pelli, 1985).

To test which of these explanations is correct, we
looked for an expansive regime in the contrast–re-
sponse functions at low contrasts. The best-fit values of
p+q from the fMRI data are 1.8 and 1.36 for subjects
djh and gmb, respectively (see Tables 3 and 4). These
values are greater than 1, consistent with an expansive
nonlinearity at low contrasts. In fact, the values of the
p and q parameter estimates are quite similar across the
two (fMRI and psychophysics) experiments (see above),
again consistent with the expansive nonlinearity
hypothesis.

We used the bootstrapped distributions of the p and
q parameter values to evaluate the statistical signifi-
cance of the evidence for an expansive nonlinearity.
The dashed lines in Fig. 5 A,B indicate p+q=1.
Parameter values estimated from the fMRI data are
indicated by the X’s. Points below the line represent
parameter values that are inconsistent with an expan-
sive nonlinearity. Two of the 200 points lie below the
line for subject djh, while 55 of the 200 points lie below
the line for subject gmb. Hence, the evidence for an
expansive nonlinearity is statistically significant in only
one of the two subjects. Further repeats of the measure-
ments might be used to disambiguate these results.

3.5. Effect of spatial frequency

Contrast detection thresholds depend on spatial fre-
quency (Graham, 1989). Detection judgements depend
inherently on both the strength of the signal and the
level of the internal noise. There are, therefore, two
mechanisms that might underlie the spatial frequency
dependence of contrast sensitivity. First, contrast gain
in some visual area(s) might depend systematically on

Table 2
Parameter values fit jointly to psychophysical and fMRI data for subject gmb

DR x2 TvC x2 fMRIArea a s0.5 s2.0 p Total x2q

64.415.32 69.73V1 1.48 0.041.64 5.21 0.30 1.58
68.12 74.30V2d 0.99 1.67 5.25 0.30 1.52 0.03 6.19
92.03 98.86V3d 1.08 1.68 4.67 0.33 1.66 0.03 6.83

0.02 5.09 72.33V3A 0.68 1.76 5.11 77.420.31 1.61
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Table 3
Parameter values fit separately to psychophysical and fMRI data for
subject djh

q Total x2s2.0 pa s0.5

1.90 0.34 1.86 2.94Psychophysics — 1.22
44.381.40V1 fMRI 1.16 2.56 6.96 0.40

Fig. 5. Scatter plots of bootstrapped parameter values estimated from
fMRI data (X symbols) superimposed on bootstrapped parameter
values from psychophysics (filled O symbols) (A) and (B), boot-
strapped distributions of p and q parameters for the two subjects.
Dashed lines indicate p+q=1. (C) and (D), bootstrapped distribu-
tions of s2.0 and s0.5 parameters. Dashed lines indicate (s2.0=s0.5).

spatial frequency. Second, the internal noise might de-
pend systematically on spatial frequency, e.g. as sug-
gested by Brady and Field (1995).

The model that we have used to fit our data can
encompass both of these possibilities. Different gains
across spatial frequencies corresponds to letting the s

parameter vary with spatial frequency, as in the joint
fits described above. Spatial frequency dependent noise
corresponds to letting the DR parameter vary across
spatial frequency. Changing DR would produce a verti-
cal shift of the TvC curves. It is clear from the psycho-
physical data in Fig. 3C and Fig. 4C that the curves
shift horizontally as well vertically so that they lie on
top of one another in the masking regime at high
background contrasts (Bradley & Ohzawa, 1986). This
is consistent with a change of gain across spatial fre-
quencies, but not with spatial frequency dependent
noise.

To further test which of these two explanations is
correct, we looked for a difference in the contrast gains
of our fMRI measurements across the two spatial fre-
quencies. If the contrast gain hypothesis is correct, then
the s2.0 parameter should be significantly larger than
the s0.5 parameter. As listed in Tables 3 and 4, the
best-fit parameter values follow this trend,s2.0\s0.5.
The statistical significance of this difference was evalu-
ated by comparing the bootstrapped distributions of
the two s values. This trend was statistically significant
(PB0.01) for both subjects.

3.6. Other 6isual areas

Reliable fMRI responses were obtained from three
other visual areas: V2d, V3d, and V3A. Contrast–re-
sponse functions from the ventral visual areas, V2v,
V3v and V4v were highly variable across repeated
measurements and often non-monotonic. We believe
that this may be because the ventral areas were further

from the surface coil, so signals from these areas suf-
fered poor signal-to-noise relative to the dorsal visual
areas.

For the dorsal areas, parameter values from the best
simultaneous fits for both subjects are provided in
Tables 1 and 2. The best-fit parameter values do not
vary greatly or systematically across these visual areas,
which indicates that neuronal contrast–response func-
tions are similar in these areas. Also, there are no
systematic differences in goodness of fit across the
visual areas.

We do not report parameter values from indepen-
dently fitting the fMRI data outside V1, because the
data did not sufficiently constrain the model in those
visual areas.

Not all brain areas have response properties that are
consistent with the psychophysical data. Several lines of
evidence suggest that a lateral region of the occipital
lobe of the human brain, that we refer to as the human
MT complex, may be homologous to monkey MT
along with surrounding motion-sensitive visual areas
(Zeki, Watson, Lueck, Friston, Kennard & Frack-
owiak, 1991; Tootell & Taylor, 1995; Tootell, Reppas,
Kwong, Malach, Born, Brady et al., 1995). Although
our slice prescription did not include the MT complex,
we know from previous studies (Tootell, Reppas,
Kwong, Malach, Born, Brady et al., 1995; Demb, 1997)
that contrast–response functions in this area show ex-
tremely high gain at low contrasts and near complete

Table 4
Parameter values fit separately to psychophysical and fMRI data for
subject gmb

p q Total x2s0.5a s2.0

4.630.29 1.57Psychophysics — 5.511.89
52.37V1 fMRI 1.57 0.01 1.17 0.39 0.97
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saturation at high contrasts. Such a contrast–response
function would predict unreasonably large contrast in-
crement thresholds at high contrasts that would clearly
be inconsistent with the psychophysical data.

4. Discussion

Contrast–response functions in areas V1, V2d, V3d
and V3A were found to be consistent with psychophys-
ically measured contrast increment thresholds, at each
of the two spatial frequencies tested. This suggests that
contrast discrimination judgements are limited by neu-
ronal signals in early visual cortical areas. In particular,
facilitation at low contrasts and masking at high con-
trasts can both be explained by the shapes of the
neuronal contrast–response functions that are expan-
sive at low contrasts and compressive at high contrasts.

4.1. Three assumptions for comparing fMRI and psycho-
physics

The comparison between fMRI responses and psy-
chophysical performance was based on three assump-
tions. First, we assumed that fMRI responses are
proportional to the local average neuronal activity,
averaged over a small region of the brain and averaged
over a period of time. The sequence of events from
neuronal response to fMRI response is complicated and
only partially understood. It is unlikely that the com-
plex interactions between neurons, regional blood flow,
and the MR scanner would result in a precise averaging
of the neuronal responses. Even so, local averaging
might be a reasonable approximation of these complex
interactions. Indeed, we have performed two empirical
tests that support the validity of this approximation
(Boynton, Engel, Glover & Heeger, 1996): (1) fMRI
responses in human V1 depend separably on stimulus
timing and stimulus contrast; and (2) responses to long
duration stimuli can be predicted from responses to
shorter duration stimuli. Although these results did not
prove that fMRI responses are proportional to local
average neuronal activity (there could be ‘hidden’ non-
linearities), we could not rule out the local averaging
approximation.

The second assumption underlying our comparison
between fMRI and psychophysics was to assume that
subjects performed each trial of the contrast discrimina-
tion task by choosing the stimulus that evoked the
greater average neuronal activity. A possible alternative
decision rule is that observers monitored the responses
of only a subset of neurons (e.g. those that are opti-
mally tuned for the particular stimuli being discrimi-
nated) when making psychophysical judgements, at a
spatial resolution that is too fine for current fMRI
techniques. There is, however, some indirect evidence

that is consistent with our assumed psychophysical
decision rule. Shadlen, Britten, Newsome and Movshon
(1996), in particular, used numerical simulations to try
to understand how neuronal signals in area MT sup-
port psychophysical performance in a direction discrim-
ination task. They concluded that the monkeys in their
experiments apparently based their psychophysical
judgements on signals carried by the average responses
of a large population of neurons, including many neu-
rons that were not tuned optimally for the particular
stimuli being discriminated.

Third, we adopted a model of the internal noise. We
assumed that the variability in the observers’ psycho-
physical judgements was due to additive, independent,
and identically distributed (IID) noise. This is a com-
mon assumption in detection/discrimination psycho-
physics, and it implies that equal steps in internal
response (e.g. average neuronal activity) are equally
discriminable. We are well aware that the variability in
single cell responses is not described by additive IID
noise. Rather, the variance in a cortical neuron’s firing
rate is proportional to its mean firing rate (Dean,
1981a; Tolhurst, Movshon & Dean, 1983; Bradley,
Skottun, Ohzawa, Sclar & Freeman, 1987; Snowden,
Treue & Anderson, 1992; Britten, Shadlen, Newsome &
Movshon, 1993; Softky & Koch, 1993). However, we
assume that performance is limited not by the noise in
these early sensory neurons, but rather by noise added
at a central decision stage of processing. Indeed,
Shadlen, Britten, Newsome and Movshon (1996), relied
on additive central noise to reconcile differences be-
tween their MT neural data and their direction discrim-
ination psychophysical data.

4.2. The parametric form for the contrast–response
function

The particular form of the contrast–response func-
tion (Eq. (1)) was chosen because it has been used
successfully both to fit psychophysical TvC data (Foley,
1994; Foley & Boynton, 1994; Teo & Heeger, 1994,
1995) and to fit electrophysiological contrast–response
data (Bonds, 1989; Albrecht & Geisler, 1991; Heeger,
1991, 1992a,b, 1993; DeAngelis, Robson, Ohzawa &
Freeman, 1992; Carandini & Heeger, 1994; Carandini,
Heeger & Movshon, 1997; Tolhurst & Heeger, 1997a,b;
Nestares & Heeger, 1997). It also has the desirable
property of being differentiable and it predicts differen-
tiable TvC functions. It is possible that a different
parametric form predicts our results equally well. For
example, the contrast–response functions in Figs. 3 and
4 could be predicted by zero response at low contrasts
up to some threshold followed by a power function.
This would also predict a dipper-shaped TvC function,
but with a sharp notch (non-differentiable point) at the
minimal threshold. Our goal, however, is not to find an
optimal parametric form to fit the data, but to show
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that the fMRI and psychophysical results agree when
compared using a parametric form that has been used
in previous studies of brain and behavior.

4.3. Single unit studies of pattern
detection/discrimination

Tolhurst, Movshon and Dean, 1983 and Hawken and
Parker (1990) recorded from single neurons in cat and
monkey primary visual cortex, and compared the neu-
ral responses with behavioral measurements of absolute
contrast detection thresholds. They found that behav-
ioral thresholds could indeed be well predicted by from
the responses of the most sensitive single neurons.

Barlow, Kaushal, Hawken and Parker (1987) and
Geisler and Albrecht (1997) recorded the responses of
neurons from the primary visual cortex of cats and
monkeys, and used those measurements to predict en-
tire contrast discrimination threshold (TvC) curves. We
concentrate here on the Geisler and Albrecht study
because it was much more extensive. They found that
behavioral contrast discrimination functions were simi-
lar in shape to: (1) the envelope of the neuronal dis-
crimination functions of the most sensitive cells, and (2)
the contrast discrimination functions obtained by
(Bayesian) optimal pooling of the entire population of
cells. However, the absolute level of optimally pooled
neuronal discriminations was far better than behavioral
performance. Geisler and Albrecht showed that the
performance using optimal pooling could be degraded
to match the behavioral performance by adding an
efficiency factor, which suggests that noise is added
after the early sensory responses. Our model is similar
in spirit; we assume that noise at the central decision
dominates the early sensory noise and is the limiting
factor in the psychophysical judgements. In addition,
there was little or no evidence for facilitation in their
optimally pooled neuronal discrimination functions.
Our assumed psychophysical decision rule is non-opti-
mal; it simply averages the activities of a large popula-
tion of neurons, many of which are not optimally tuned
for the particular stimuli being discriminated. It would
be interesting to reanalyze the Geisler and Albrecht
data using this non-optimal neuronal pooling rule in
conjunction with some assumption about the covari-
ance of neural responses and additive noise at the
central decision stage; perhaps this would provide a
better prediction of their behavioral data.
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