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Introduction

A decision is a commitment to a proposition among multiple options. Often
this commitment leads to a particular course of action. It might be said that the
life of an organism consists of a series of decisions made in time [29]. Leaving
aside the moral dimension of choices, it is reasonable to view even pedestrian
decisions as a window on higher cognitive function, for they offer a glimpse
of how the brain connects information to behavior in a contingent manner. In-
deed, even simple visual decisions are based on a sophisticated confluence of
available sensory information, prior knowledge, and the potential costs and
benefits associated with the possible courses of action. Thus, understanding
the neural basis of these decisions provides a model for the principles that gov-
ern higher brain function. An important step in making progress toward this
goal is to develop frameworks for understanding simple decisions.

In this chapter, we describe one such framework, sequential sampling, which
has been used to explain a variety of reaction-time decision tasks. This frame-
work has a rich history in statistical decision theory and mathematical psychol-
ogy. Our review is at best cursory, but we provide some key citations to the
literature. Our main goal in this chapter is to provide an introductory tutorial
on the mathematics that explains the psychometric and chronometric functions
— that is, accuracy and speed of decisions as a function of difficulty. Then, to
underscore our enthusiasm for this framework, we briefly summarize recent
data from our laboratory that suggest a possible neural implementation of the
computational principles in the parietal cortex of the monkey.
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The Diffusion-to-Bound Framework

In this chapter, we consider simple binary decisions made upon the sequen-
tial analysis of evidence. In principle this evidence could arrive continuously
in time or in discrete time steps. At each time step, the decision-maker either
stops the decision process by committing to one of the alternatives or continues
the process by waiting for the next piece of evidence. Thus, in a very general
sense, the process involves tradeoffs between speed and accuracy and costs as-
sociated with obtaining more information. The framework is sufficiently rich
to show up in a variety of problems, from quality control decisions (ship or
reject a lot), to pricing bonds, and perception [15, 19]. Our interest is in per-
ception and higher brain function. Perhaps it is worth saying at the outset that
not all problems in perception involve the sequential arrival of information,
and even when information is provided this way, there is no guarantee that
it will be accumulated across time. However, in the particular case we study,
it clearly is. Furthermore, we believe this gives us some insight into how the
brain can solve more complex decisions that involve the accumulation of evi-
dence obtained at different points in time.

For students of neuroscience and perception, the sequential analysis of in-
formation to some termination point lies at the heart of understanding mea-
surements of reaction time and perceptual accuracy. Reaction-time tasks are
important because they highlight the tradeoff in speed and accuracy of per-
ception and because they permit identification of the time epoch in which a
decision is forming but has not yet been completed. Simultaneous measure-
ment of choices and reaction times provides multiple quantitative constraints
that must be satisfied by any theory that aims to explain the neural mechanisms
underlying the decision process.

For these reasons, we study decision-making in the context of a reaction-time
motion discrimination task. In this task, fixating subjects are presented with a
patch of moving dots. Some of these dots move together, or “coherently” in a
given direction, while the remaining dots move randomly. At any time after
motion onset, subjects can indicate their choice about the direction of motion
of the stimulus by making a saccade to one of two targets. To make the task
easier or more difficult, the percentage of coherently moving dots is increased
or decreased. This task can be performed by both human and monkey subjects,
allowing for both psychophysical and physiological investigation. Multiple
studies have shown that accuracy depends on the coherence of the moving
dot stimulus (figure 10.1 A) [6, 27]. Furthermore, both humans and monkeys
reach their decisions faster when the motion coherence is larger, that is, when
the task is easier (figure 10.1 B). Ultimately, we would like to understand the
neural mechanisms that underlie both the choices and reaction times measured
in this task.

The diffusion-to-bound framework, illustrated in figure 10.2, explains the
pattern of behavior shown in figure 10.1. In this framework, noisy momentary
evidence for one alternative or the other displaces a decision variable in the
positive or negative direction. The expected size of the momentary evidence
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Figure 10.1 Behavioral data from one monkey performing reaction time (RT) version
of the direction discrimination task. A. Psychometric function. The probability of a
rightward direction judgment is plotted as a function of motion strength. Positive co-
herence refers to rightward motion and negative coherence to leftward motion. B. Effect
of motion strength on RT. Mean RT for correct trials is plotted as a function of motion
strength as in A. Error bars are smaller than the symbols. The solid lines show a com-
bined diffusion model fit to the choice and RT data.

is related to the direction and strength of the motion stimulus, but in any one
moment, the evidence is a random number. Over time, these random momen-
tary evidence values are accumulated, giving rise to a random trajectory. The
decision process terminates when the trajectory encounters a bound at +£A. The
particular bound that is crossed determines the choice, and the time taken to
reach that bound determines the decision time. The important idea is that a
single mechanism explains both which choice is made and how long it takes to
make it.

These predictions can be described by relatively simple analytical equations,
which give rise to the fits in figure 10.1. The psychometric function describes
the probability of choosing the positive direction as a function of the motion
strength, C:

1

by = 1+ e—2kCA

(10.1)

where k and A are fitted parameters. The direction of motion is indicated by the
sign of C. The probability of choosing the positive motion direction is P.. We

assume that the subjects are unbiased. Therefore, when C =0, P, =1— Py =
1

5
The chronometric function describes the reaction time as a sum of decision
and nondecision times. The decision time function shares the same parameters
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Figure 10.2 Diffusion-to-bound model of the decision process. Momentary evidence
in favor of the “A” choice and against the “B” choice is accumulated as a function
of time. The process terminates withan “A” or “B” choice when the accumulated
evidence reaches the upper or lower bound, respectively, at A or —B. The momentary
evidence is distributed as a unit-variance Gaussian whose mean, y, is proportional to
motion strength. The decision variable on a single trial follows a random “ diffusion”
path, like the one shown. The average of many of these paths would appear as a ramp
with slope p and variance proportional to time. Both decision time and the proportion
of “A” and “B” choices are governed by A, B, and p.

as in the psychometric function:

E[t] = % tanh (kC A) (10.2)

When C=0, this equation is interpreted as a limit
lim > tanh (kCA) = A? (10.3)
omokC " B '

We will derive these equations in a later section, but for now, it suffices to say
that they capture the data reasonably well. Indeed, this model explains the
choices and reaction times of monkey and human subjects on a variety of sim-
ple, two-choice discrimination tasks under different speed-accuracy pressures
[14, 24]. Before working through the derivations, let’s acquaint ourselves with
the fitted parameters in equations (10.1) and (10.2).

The simplest form of the diffusion model, as employed in this example, has
three parameters. First, there is the bound height, A, which mainly controls the
balance between speed and accuracy. We place these bounds equidistant from
the starting point because at the beginning of the trial, before any evidence has
arrived, the two alternatives are equally likely. We will restrict our analysis to
this simple condition. The value of A represents the total amount of evidence
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that is required before a decision is made. Because random variations in the
momentary evidence tend to average out with larger numbers of samples, a
larger absolute value of A results in a greater level of accuracy. But the cost is
time: a higher bound takes longer to reach, on average, resulting in a slower
reaction time.

The second parameter, k, converts the stimulus strength into the drift rate
of the diffusion process. The average drift rate is effectively the average value
for the momentary evidence that accumulates per unit time. We will elaborate
the concept of momentary evidence and its accumulation in later sections. For
now, kC' can be thought of as the mean of the momentary evidence normal-
ized by its variance. For the random-dot motion experiments, it provides a
very simple conversion from stimulus intensity and direction to the mean of
the random number that accumulates sequentially. We are free to think about
the momentary evidence or its accumulation. The momentary evidence is de-
scribed by a distribution of random numbers: at each time step there is a draw.
The accumulation has an expected drift rate equal to this mean per time step.

A third parameter is required to fit the reaction time data. The average non-
decision time, ,,4, accounts for the sensory and motor latencies outside the de-
cision process per se. On any one trial, ¢,,4 is a random number, but for present
purposes, we are only concerned with its mean value. The mean reaction time
is the sum of the mean decision time and the mean nondecision time.

The three parameters, k, A, t,,4, are chosen to fit the choice and reaction time
data in figure 10.1. Clearly they do a reasonable job of capturing the shapes of
both functions and their relative position on the motion strength axis. This is by
no means guaranteed. It suggests that a single mechanism might underlie the
choices and decision times on this task. We emphasize that we do not expect
all perceptual decisions to obey this framework. But many probably do.

Derivation of Choice and Reaction Time Functions

We will now explain how the accumulation of noisy momentary evidence to a
positive or negative bound leads to the equations above: a logistic choice func-
tion and a tanh(x)/z decision time function in terms of stimulus strength. The
exercise explains the origins of these functions, exposes the key assumptions,
and gives us some insight into how these expressions generalize in straightfor-
ward ways to other decisions. The mathematics was developed by Wald and
summarized in several texts [9, 15]. Here, we attempt to provide a straightfor-
ward explanation of the essential steps, because these ideas can be challenging
to students and they are not well known to most physiologists. We emphasize
that this is a synthesis of well-established results; certainly many important
extensions of the theory are omitted. For additional reading, we recommend
Link’s book [19] and several insightful and didactic papers by Philip Smith
[32, 33]. Other key references are cited below.



212

10.3.1

10.3.2

10  Speed and Accuracy of a Simple Perceptual Decision ~ Michael N. Shadlen, et al.

Overview

Boiled down to its essence, the problem before us is to compute the proba-
bility that an accumulation of random numbers will reach an upper bound at
+A before it reaches a lower bound at —A. This has an intuitive relationship
with accuracy in the following sense. If the evidence should favor the deci-
sion instantiated by reaching the upper bound, what we will call a positive
response, then the expectation of the momentary evidence is a positive num-
ber. Obviously, the accumulation of random numbers that tend to be positive,
on average, will end at +A more often that at —A. We desire an expression that
returns the probability of such an accurate “positive” choice based on a de-
scription of the random numbers that constitute the momentary evidence. Our
primary goal is to develop this formulation. Our second goal is to develop an
expression for the number of samples of momentary evidence that it takes, on
average, to reach one or the other bound. This is the decision time. Along the
way, we will provide some background on the essential probability theory.

Statement of the Problem

Consider a series of random numbers, X1, X5, ..., X,,, each drawn from the
same distribution. We are interested in the stochastic process that unfolds se-
quentially from the sum of these random numbers

Y, = Zj; X; (10.4)

We assume that each value of X is drawn from the same distribution and each
draw is independent of the values that preceded it. In other words, the X; are
independent and identically distributed (i.i.d.). Like the X;, the Y; are also a
sequence of random numbers. In fact there is a one-to-one correspondence be-
tween the two series. However, unlike the X;, the Y; are neither independent
nor identically distributed. They are the accumulation of the X;. Each subse-
quent value in the sequence of Y depends on the value that had been attained
at the previous step. So there is clearly some correlation between Y,, and Y,,_,
and we certainly would not say that the distribution of Y on the n*” step is the
same as it was on the step before. On the other hand, the distribution of Y, is
easy to describe if Y;,_; is known. It is just Y,,_; + X,,. Since it is unnecessary
to know how Y;,_ attained its particular value, we say that the sequence, Y;, is
a Markov process.

Y1,Ys, ..., Y, represents a random path from the origin, the accumulation of
random numbers, X1, Xs, ..., X,. The path, Y, can be written as a function of
t or as a function of the number of time steps, n = t/At. If the time steps are
discrete the stochastic process is termed a random walk, and if ¢ is continuous,
Y is a termed a diffusion process. We tend to gloss over these distinctions
(but see Appendix 10.1). We can do this because we are always considering
time steps that are small enough (with respect to the bounds) so that it takes a
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large number to reach the bounds. This means that even if time steps come at
irregular intervals, the number of steps multiplied by the average time step is
a good approximation to the time to reach the bound, and the increments are
small enough that we can treat the last step as if it reached the bound at +£A
exactly, without overshoot.

According to our formulation, the process stops when Y, reaches +A or —A.
Our goal is to derive expressions for the probability of reaching these bounds
and the average stopping times. We want these expressions to be functions of
the stimulus strength (sign and magnitude of the evidence). Because the distri-
bution of the values to be accumulated, X;, depends on the stimulus intensity,
our goal is to derive these expressions in terms of the distribution of X;.

Background: Moment Generating Functions

A concept that will be useful in this endeavor is that of the moment-generating
function (MGF) of a probability distribution. The MGF (when it exists) is
simply an alternative description of a probability distribution, and it can be
thought of as a transformation that is convenient for certain calculations (much
like a Laplace or Fourier transform). The MGF of a random variable X is the
expectation of e?X over all possible values of X:

Mx(0) = E [*X] = / h f(x)e’de, (10.5)

where f(z) is the probability density function for X, and 6 can be any arbitrary
value. If you are familiar with Fourier analysis or the Laplace transform, think
of 6 as the frequency variable. If this is a foreign concept, just think of 6 as a
number; and the MGF is a function of this number.

Figure 10.3B shows the MGF for the normal distribution with mean = 1.5 and
standard deviation = 1.5 as shown in figure 10.3a. Interestingly, the slope of the
function at § = 0 is the mean (or first moment) of X. We can see this by taking
the derivative of equation (10.5), with respect to 6:

M5 (0) = %E (%] = a% /OO f(z)e’de = /°° zf(z)efdx (10.6)
At the point § = 0,
M5 (0) = /OO z f(z)dr = E[z], (10.7)

(Some students may need to be reminded that an expectation of a function of
x is nothing more than a weighted sum of all possible values of that function;
the weights are defined by the probability of observing each of the possible
random values of x. The simplest case is the weighted sum of the x values
themselves, that is, the expectation of x, which is termed the mean or first mo-
ment.)
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Figure 10.3 Effect of changes in mean and variance of a distribution on its moment-
generating functions (MGFs). A. Probability density function (PDF) for a Gaussian dis-
tribution with a mean of 1.5 and a variance of 2.25 and standard deviation of 1.5. B.
MGEF associated with the PDF in A. Tangent line at § = 0 indicates the first derivative
at 0. This is E[X] (the mean), which equals 1.5 (note scaling of ordinate and abscissa).
Asterisk indicates the 6 zero crossing. C. Same PDF as in A (black trace), alongside
a normal PDF with a larger mean and the same variance (gray dashed trace), and a
normal PDF with the same mean and a larger variance (gray solid trace). D. MGFs as-
sociated with each PDF in C. Line styles are the same as in C. Asterisk indicates the 6;
zero crossing. E. Same PDF as in A (black trace), alongside a normal PDF with a larger
mean and larger variance (gray dashed trace). F. MGFs associated with each PDF in E.
Line styles are the same as in E. Asterisk indicates the 6, zero crossing.

It is also worth mentioning that the second derivative of the function shown
in figure 10.3B evaluated at zero is the expectation of the squared values of the
random variable, also known as the second moment. Just differentiate the ex-
pression in equation (10.7) again. Now an z? appears in the integral. This pro-
vides a little insight into the shape of the function shown in figure 10.3B. Since
the expectation of a squared random number must be positive, we know that
the convexity of the MGF at 0 is positive. It also explains the term “moment-
generating”: when evaluated at 6 = 0, the 1°¢,2"4 ... nt" derivatives of M (f)
return the expectations of z, 22, ..., z".
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Figure 10.3D and F show examples of MGFs associated with the normal dis-
tributions shown in figure 3C and E, each having a different mean and vari-
ance. You can see that higher means steepen the slope of the function at 6 = 0,
whereas higher variance exaggerates the convexity. The figure also highlights
a feature of the MGF that will be important to us in a moment. Notice that the
M(0) = 1 (because e°X is 1 for all X). The MGF then returns to 1 at another
point. These are marked in the figure with an asterisk. We refer to this special
root of the MGF as 6;; so

Mx (61) = Mx (0) =1 (10.8)

0, is going to play an important role in the argument we are about to share.
You'll want to return to this figure later. For now, notice that §; moves further
from 0 when the mean is a larger positive number (figure 10.3C,D, dashed gray
trace), it moves toward 0 when the variance is larger (figure 10.3C,D, solid gray
trace), and it is unchanged when the ratio of the mean to variance remains the
same (figure 10.3E,F).

MGFs are useful for analyzing the sums of random numbers. For example,
suppose we add two random numbers to produce a new one:

The distribution of S can be written as a convolution of the distributions for X
and Xs:

fs)= [ T a0 fxa(s — 1) dr. (10.10)

where fx, and fx, are the probability density functions for the X; and X,. An
intuition for this is that the probability of making a particular sum, S = s, is the
probability that X; = r and X, = s — r for all possible values of r. Effectively,
the distribution of the new variable, S, is achieved by shifting and blurring the
distribution for one of the added variables by the other.

Now suppose X; and X, have MGFs My, (6) and My, (¢). The MGF for S is
simply the product of these:

M (6) = Mx, (9)Mx, (6) (10.11)

Thus convolution of the probability functions is replaced by multiplication of
these transformed functions, which is often a more convenient operation. This
general idea is a concept that should be familiar to readers acquainted with
Fourier and Laplace transforms. It turns out to play a key role in the derivation
of the psychometric function.

Thus, the MGF associated with Y,,, as defined in equation (10.4), is the MGF
associated with the momentary evidence, X, multiplied by itself n times.

My, (6) = M%(0) (10.12)

This is the MGF associated with the height of the trajectory after n steps, ignor-
ing the bounds.
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A Moment Generating Function for the Terminated Accumulation

The decision process ends when the accumulation of evidence reaches one of
the bounds, that is, when Y = +A. The tilde above the Y is there to indicate
that we are considering the accumulation at its termination. There is no sub-
script, because the number of steps is a random number: the distribution of
decision times.

Using the concept introduced above, we can also express this distribution in
terms of its MGF,

My (0) = E[e] = Py + (1 — Py)e 4, (10.13)

where P, is the probability of stopping at the positive bound. Notice the brute
force expansion of the expectation as the weighted sum €4 and e?(—4). Our
plan is to use this equation to obtain an expression for P,. As it is, the equa-
tion is not practical because it contains an MGF and the variable §. We would
like instead to have terms that we can relate to stimulus intensity (e.g., motion
coherence). To achieve this, we seek another way to represent the MGF for the
terminated accumulation.

Wald’s Martingale

This can be done in the following way. First, we create a new stochastic process,
Z1,Zs, ..., Zy that parallels the sequence Y7,Y5,...,Y,:

Zy = M_"(0)e" (10.14)
For any particular choice of §, the MGF part becomes a number raised to the
negative n’* power. In that case (and if § # 0) the Z; form a sequence of
random numbers in one-to-one correspondence with the Y;. In fact, we could
say that before the process begins, the accumulation starts at Yo = 0 and Zp = 1.

This newly created sequence has the following important property. If at the
nt" step, the process happens to have attained the value Z,,, then the expecta-
tion of the random value that it will attain on the next step is also Z,

E[Zni1|Z0] = Zn - (10.15)

Think about what this means. Z,, is a random number—the n** value in a
sequence of random numbers. Imagine observing this sequence as it plays
out, one step at a time. Suppose we have just seen the n'”* step and we are now
waiting for the next random number in the sequence. At this point, the value of
Zy, is known. Now, we know that the next step will produce a random number.
But the expectation of this random number (i.e., the average if only we could
repeat this next step many times) is the number we have in hand. That is the
meaning of equation (10.15). It says that on average, we do not expect the next
step in the sequence to change from the value that it happened to attain on the
pervious step. Of course, this is only true on average. Any given sequence of
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Accumulatior Wald’s Martingale
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Figure 10.4 Two stochastic processes. The two lists of random numbers are created by
updating the previous value in the list using a random draw, X,,. Each, X1, X5, X3, ...,
is drawn from the same distribution, and each draw is independent from the others.
The formulas show how to use the current draw to update the previous value of Y or
Z using the previous value attained and the new draw of X.

Z; will wander about because the next number is unlikely to actually be the
last number that was attained—that’s just the expectation.

We can appreciate this in another way by considering an alternative recipe
for generating the Z,, illustrated in figure 10.4. To make any Z,,;, begin with
Zy, draw a random value, X,,1;; multiply Z,, by e?Xnt1 and divide by Mx (6).
Since Mx (6) is E [e?X+1], the expectation of Z, 1 is Z,,.

A random variable sequence that has such properties is called a martingale.
In fact, the stochastic process Zy, Z1, .. ., Z, is a martingale with respect to the
Y, because E [Z,,11 |Yy,Y1,Y>, ..., Y,] = Z,. This property can also be worked
out directly from the definition of Y and Z, as follows:

E[Zpi1 Yo, Y1, Yo, .., Yol = E [M;("“)(é))e”w Yo, Y1, Ya,. .., Yn}

=E {M;"H) (9)@0(Y7L+X7L+1)} (by the rule for generating Y;, 1)
= E[My(0)M" ()" X rs]

= E[My'Z,(0)e’X»+](using the definition of Z,)

= Mx"(0)Z,E [e?Xn+1] (because Z, and Mx (6) are known)
-7,

(10.16)
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Any particular instantiation of Z is a random process that is one to one with a
particular instantiation of a random walk, Y. Yet, the expectation of any Z,, is
always the same. In fact it is always 1.

X

E(Z,) = E [M;™(0)e”"] = M_"(0)E [¢”"] = M_"(0) My, (6) =1 (10.17)

Notice that the MGF is a function of § — at any particular value of , it is
just a number — so it can be removed from the expectation in the first line of
equation (10.17). The last equality follows from equation (10.12).

The stochastic process, Z, is known as Wald’s martingale and the identity in
equation (10.17) is known as Wald’s identity, usually written

E[M_"(0)e] =1 (10.18)
The usefulness of creating Z is not yet apparent, but in a moment, we will
exploit an important property it possesses.

Another Moment Generating Function for the Terminated Accumula-
tion

Equation (10.14) gives us an expression that relates each Z, to its associated
Y,, and therefore to the distribution of each X;, but remember that our goal is
to relate the stopped variable Y to that distribution. Fortunately, an important
property of martingales, the optional stopping theorem, will enable us to do
s0. Suppose the sequence Z is forced to stop when the accumulation Y reaches
one of the bounds. Let Z represent the “stopped” value of Z.

Z =M:"(0)e?Y (10.19)

We placed a tilde over the n in this expression to indicate that we do not know
the number of steps it takes to terminate. In fact n is a random number that we
will relate to decision time. Because n is a random number, we cannot simply
take the stopped accumulation and convert it to a stopped value for Wald’s
martingale. We do not know how many times we need to divide by Mx (6).
Fortunately, we can work with the expectation of Z.

The optional stopping theorem for martingales states that £ {ZN} = E[Z,)]
even though the number of steps, n, is a random number. We will not prove
this theorem, but it ought to come as no surprise that this would hold, because
the expectation of Z is always the same, in this case 1. Thus,

E [M;ﬁ(e)e‘ﬂ -1 (10.20)
The left side of this expression almost looks like the definition of an MGF for Y,
which is what we desire. But alas, there is the M _"(6) bit inside the expecta-

tion. This expression is especially problematic because it introduces a random
variable, 7. If only we could make this bit disappear.
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Here is how. Equation (10.20) holds for any value of 6 that we choose. So let’s
choose 6 such that Mx(6) = 1. Then it no longer matters that 72 is a random
number, because 1 raised to any power is always 1. Recall from the discussion
of MGFs above that there are two values for ¢ that satisfy this identity: 0 and
the point marked 6 (the asterisk in figure 10.3B). For all MGFs, M (0) = 1, but
this is not useful (Z is not a stochastic process — it is always 1). However,
this other value away from the origin is profoundly interesting. It is guaran-
teed to exist if (i) Xhas a MGF, (ii) X has finite variance, (iii) F[X] # 0, and
(iv) the range of X includes positive and negative values. The first two con-
ditions are formalities. The third omits a special case when the slope of the
MGEF is zero at O (effectively, ; = 0). The last condition implies that the ran-
dom increments can take on positive and negative values — in other words,
the conditions leading to a random walk or diffusion process. Suffice it to say
that for the conditions that interest us, 6, exists. At this special value, § = 0,
equation (10.20) simplifies to

E [e"lﬂ —1 (10.21)

Equation (10.21) is not an MGF for the stopped random value Y, but it is a
point on that MGE.

The Psychometric Function

We have now found a value of 6 for which the expression E[eef/] is known, and
we can plug this back into equation (10.13), yielding:

My (6y) = E[e"Y] = Pye® 4 + (1 - Py)e "4 =1 (10.22)
Solving for P

1—e 014 1—e 04 1
A _ o—0iA  o—0.A (A 1 1) (A —1) T 1tehA

P, = (10.23)
The probability of terminating a decision in the upper vs. lower bound is a
logistic function of the argument ¢, A.

We have very nearly achieved an expression for the psychometric function.
All that remains is to relate 6; to the stimulus intensity variable (e.g., motion
coherence). We know that 6, is a root of the MGF associated with the distri-
bution of X, the momentary evidence that accumulates toward the bounds.
Suppose X obeys a normal distribution with mean p and standard deviation
0. The MGF associated with the normal distribution is

My (0) = ePnt30%0" (10.24)
which is 1 when

2
g, = — (10.25)



220

10.3.8

10  Speed and Accuracy of a Simple Perceptual Decision ~ Michael N. Shadlen, et al.

Suppose that stimulus intensity leads to a proportional change in the mean of
the momentary evidence but no change in the variance. Then, we can write

6, = —2kC/c*  (k>0), (10.26)

which gives us a logistic function resembling equation (10.1). The only differ-
ence is the o2 term here. This term, which we set to 1, provides a scaling for
A and p. We will justify these assumptions (at least partially) in a later sec-
tion and consider the meaning of the fitted parameters, k¥ and A, in terms that
connect to noisy neurons in the visual cortex.

The form of the equation will depend ultimately on whatever particular as-
sumptions we make about the relationship between motion coherence and the
distribution of momentary evidence. The important point of the exercise is not
to justify these assumptions but to recognize what it is about the distribution of
momentary evidence that will lead to a prediction for the psychometric func-
tion (PMF). We prefer to leave this section with the PMF in its most general
form prescribed by equation (10.23). This is a remarkable insight with many
fascinating implications [19], some of which we will describe in detail later.

Decision Time

Now that we have computed the probability of terminating a decision in the
upper vs. lower bound, we will derive an expression for the average time to
reach the bound. This is the length of a time step multiplied by the number of
steps taken to reach the bound, what we called 7. We will derive an expression
for the mean of this quantity, £ [n]. The first step is to take the derivative of
both sides of equation (10.20) with respect to 6:

E {eef/};M)Eﬁ(e) _ eoYﬁMglfﬁ(g)M%(g) =0 (10.27)

Evaluating this expression at § = 0 greatly simplifies matters. Recall that an
MGEF is always 1 at § = 0 and the first derivative is the first moment (i.e., the
mean). Therefore

E [Y - ﬁu] —0, (10.28)
which can be rearranged

E[n] = EB}] (for pu #0) (10.29)

This is a deceptively simple expression. It tells us that the mean number of
steps to reach one of the bounds is the average accumulation at the time of the
decision divided by the average increment in the evidence. Now Y is either
+A or —A, but it is more often +A when p > 0, and it is more often —A when
i < 0. The expectation is just a weighted sum of these two values. Therefore

E[Y] = PyA+ (1 - P.)(—A) = (2P, — 1) A (10.30)
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and
B = G- 1A (10.31)
H
Substituting the expression for P, from equation (10.23), yields
A 2 A(1—eh4
Enl=—|—F5-1|=—|—5% 10.32
7] w (1—1—691‘4 ) " <1+691A> (10.32)

Multiplying numerator and denominator by e yields a simple expression

based on the hyperbolic tangent function:

1A 1A
Afe ™ —e A A
Eli]=> | “gx gz | = = tanh (—91 ) (10.33)
po\ =5 4%t [ 2

This general expression tells us that the number of steps is related to the bound
height, the mean of the momentary evidence, and ¢,. The value for §; depends
on the distribution that gives rise to the values of momentary evidence that are
accumulated. We offer some helpful intuition on this below, but it is a number
that tends to scale directly with the mean and inversely with the variance of
that distribution. For the normal distribution, this tendency holds exactly. If
we assume that the X; are drawn from a normal distribution with mean ;. and
variance o2, then

Eln] = %tanh (“A> (10.34)

o2

In the special case where the momentary evidence favors the two decision out-
comes equally, i = 0 and

2
E[f] = lim > tanh ("‘f) -4 (10.35)
n—0 L g g

Again, suppose a change in the motion strength, C, leads to a proportional
change in the mean of the momentary evidence, but no change in the variance.
Then substituting —2kC/o? for 6, into equation (10.33) yields

En] = A fanh (kCQA> (10.36)
" o

Equation (10.36) resembles equation (10.2), which we fit to the reaction time
data in figure 10.1. The only difference is the o® term here. This term, which
we set to 1, provides a scaling for A and y.. The average decision time at C' = 0
is therefore E [i] = A% This implies that the variance associated with the mo-
mentary evidence at each time step is 1. This implies that the variance associ-
ated with the momentary evidence at each time step is 1, and the coefficient, k,
should be interpreted as follows: 1 = kC' is the mean of a normal distribution
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whose variance is 1 in a single time step. The momentary evidence is drawn
from this distribution in each time step. This gives us a way to reconcile the
fitted parameters, k and A, with measurements from neurons. We will resume
this thread below.

Before leaving this section, we should point out one other aspect of the equa-
tions for decision time: they apply to both choices. In the equations above, E [7]
is the expected number of steps to reach either bound. It is the expected number
of steps to finish, regardless of which bound is reached. However, when the
upper and lower bounds are equidistant from the starting point, it is often the
case that the expected number of steps to one or the other bound is exactly the
same. This holds when the momentary samples (X;) are drawn from the nor-
mal distribution. This is obvious when the mean of the momentary evidence
is 0 — the case of a purely random walk. For any path of steps that ends in
the upper bound, there is an equally probable path to the lower bound. It may
be less obvious when there is a tendency to drift in the positive or negative
direction. In that case, the claim is that the average number of steps to reach
the “correct” bound (e.g., the positive bound when the evidence is positive, on
average) is the same as the average number of steps to reach the “incorrect”
bound. In fact, the entire distribution of stopping times should be identical
and merely scaled by P, and its complement.

Consider a “path” that ends in the upper bound after n steps. The likelihood
of observing this path is a product of likelihoods of obtaining the n values,
X1,Xs,..., X, from N {y,0}. Any such path has a mirror image that ends
in the lower bound. The likelihood of observing this path is the product of the
likelihoods of drawing — X, — X5, ..., —X,from the same normal distribution.
The ratio of these likelihoods is

_(xi=m?

P (X1, Xo,. ... Xp |1ty 0) [l e 7 WE X
= = e o :e(r,
P(_XI)_XQa"'a_XTL |/’[”0-) Hl 21 67%
(10.37)

where A is the sum of the increments, X;. Since all paths sum to this same
value, every path that ends in the upper bound (+A) has a corresponding path
that ends at the lower bound. The probability of observing any path to the
upper bound is the same as the one to the lower path multiplied by a constant,
which happens to be the odds of hitting the upper bound. We can see this by
computing the odds from equation (10.23);

1
P (1 v A) 204
o _\Fen — e 014 = 0 (10.38)
R ==
1+ef14
From the perspective of the present exercise, the equality of mean decision
time regardless of which bound terminates the decision is convenient on the
one hand and damaging on the other. It is convenient because our equation for
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fitting the reaction time is appropriate even when we fit just the correct choices,
as in figure 10.1. It is damaging because it predicts that the mean reaction time
for error trials ought to be the same as for correct choices. In our experiments,
they are close, but the reaction time on error trials is typically slightly longer
than on correct trials [27, 24]. A variety of solutions have been proposed to
remedy this deficiency. The most obvious, but the least explored, is to use a
non-Gaussian distribution for the momentary evidence [20]. It turns out that if
the slopes of the MGF at 6; and at 0 are not equal and opposite, then E [71] are
not the same when the process terminates at the upper or lower bound. Link
and Heath illustrate this for the Laplacian distribution. Other solutions include
variability in E[X] and starting point [17, 26] and a nonstationary bound. For
example, if an “urgency” signal lowers the bounds as a function of time (or an
equivalent addition is made to the accumulation) then longer decisions will be
less accurate [10]. Variants on the nonstationary bound idea include adding a
cost of computing time.

If the bounds are not equidistant from the starting point of the accumulation,
then the decision times for the two choices are wildly different. Expressions for
these conditionalized stopping times can be found in [24] and [31] for Gaussian
increments, and in [20] for non-Gaussian increments based on 6.

Summary

We derived general forms of expressions for P,, the probability that an accu-
mulation of random numbers will reach a positive bound before it reaches a
negative bound, and F [], the number of random numbers that are added, on
average, to reach either bound. The most general forms of these expressions
are functions of the absolute value of the criterion and a special root of the
MGEF associated with the random increments. To achieve our fitting functions,
we assumed that the random increments were drawn from a normal distribu-
tion. The special root is proportional to the mean divided by the variance of
the increments: #; = —24 /0. To construct our psychometric and chronomet-
ric functions, we made the additional simplifying assumption that this term
is proportional to our stimulus intensity variable, motion strength. Recall that
motion strength is a signed quantity; the sign indicates the direction. Thus,
positive motion strengths give rise to positive increments, on average, and neg-
ative values of 6.

The real dividend of this argument, we hope, is in the general expression that
revolves around ¢,. The random numbers that accumulate in the brain may
not be normally distributed (see Appendix 10.1) and the mapping between
strength of evidence and the parameterization of momentary evidence may
not be as simple as a proportional relationship to the mean. The connection
between quality of evidence (e.g., stimulus intensity) and behavior (i.e., choice
and decision time) are mediated via §;. If we know how intensity affects 6,
then we can predict the shape of the psychometric and chronometric functions.
It is reasonable to consider this term proportional to the mean/variance ratio
for increments drawn from a variety of distributions. And it is not too hard to
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appreciate how neurons could give rise to such a quantity.

Implementation of Diffusion-to-Bound Framework in the Brain

Our enthusiasm for the random walk to bound framework emanates from
physiology experiments. For the random-dot motion task, there are neural
correlates for both momentary evidence and its accumulation. Although there
is much to learn about many of the most important details of the mechanism,
we understand enough to believe that this mechanism, or something very close
to it, actually underlies decisions on the random-dot motion task.

The Momentary Evidence for Direction is Represented by Neurons in
area MT/V5

MT/V5 is an area of extrastriate visual cortex first identified by Zeki [12] and
Allman and Kaas [2] and appears to be specialized for processing visual mo-
tion [1, 5, 23, 4]. The random-dot motion stimulus used in our task was tailored
by Newsome, Britten, and Movshon [22] to match the receptive field prefer-
ences of neurons in the middle temporal area (MT). We know from a variety of
stimulation and lesion experiments that area MT plays an essential role in al-
lowing a monkey to perform the discrimination task. Indeed microstimulation
of a cluster of rightward-preferring MT neurons causes the monkey to decide
that motion is rightward more often [28] and to do so more quickly than when
there is no stimulation [11]. Moreover, stimulating these same right-preferring
neurons affects leftward decisions negatively. When the monkey decides that
the motion is leftward, he does so more slowly when right-preferring neurons
have been activated by microstimulation.

MT neurons respond to random-dot motion stimuli by elevating their fir-
ing rates. As shown in figure 10.5, the firing rate rises the most when highly
coherent motion is in the neuron’s preferred direction, and it is lowest when
highly coherent motion is in the opposite (null) direction. Notice that the re-
sponse is elevated relative to baseline when low coherence motion is shown
in either direction, but the firing rate is slightly greater when the motion is in
the neuron’s preferred direction. After a brief transient associated with the on-
set of the random dots, the response reaches a fairly steady (but noisy) firing
rate while the random-dot motion is displayed. It is the firing rate during this
steady period that constitutes the momentary evidence. Notice that there is no
sign of accumulation in these responses. They look nothing like the trajecto-
ries of a random walk. Rather, they provide the momentary evidence that is
accumulated elsewhere in the brain.

A Crude Estimate of 6; from the Neural Recordings

The experiments suggest that the momentary evidence for rightward, say, is
based on a difference in firing rates between right-preferring and left-preferring
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MT neurons [11]. There is good reason to believe that a decision is not based
on a pair of neurons but on the activity from ensembles of neurons. For the
random-dot displays used in our experiments, a typical MT neuron will change
its average firing rate by ~40 spikes per second (sp/s) as motion strength in-
creases from 0% to 100% in its preferred direction, and it will decrease its re-
sponse by ~10 sp/s over this same range of motion strengths when the direc-
tion is opposite to its preferred direction [7]. If this difference in spike rates
between ensembles of right- and left-preferring MT neurons constitutes the
momentary evidence for rightward,

UMT = E [XR - XL] = 506’7 (1039)

where once again C is motion coherence on a scale from -1 to 1.

What happens to the variance of this difference variable? For a single neu-
ron, the variance of the number of spikes emitted by an MT neuron in a fixed
epoch is typically a constant times the mean of this number, termed the Fano
factor, ¢. For a single MT neuron, ¢; ~ 1.5. Suppose the spike rate is 20 sp/s
when C = 0. Then the expected number of spikes in 1 second is E [s] = 20 and
the variance of the spike count in a 1 second epoch is ¢1 E [s] = 30 sp®. The
average of N spike counts is the sum of N random numbers, 3, 3, , %. So the
expected mean count is the same as the expectation of the count from a single
neuron:

s

E[s| = NE [ N} = E[s] (10.40)

However, the variance of the mean count is

Var s _ $1E [s]

e ¥ (10.41)

s

Var[s] = NVar {N} =N
This expression for the variance of a mean holds when the counts that are av-
eraged are statistically independent. For sums of independent variables, the
variance of the sum is the sum of the variances associated with each random
variable.

Unfortunately, MT neurons are not independent in their responses. In that
case, the variance of the sum is the sum of all the terms in the N by N covariance
matrix depicted here,

2
g7 oo T'1n010p

: (10.42)

T'm10no1 e g 721
where 7;; is the correlation coefficient between the count from the i*" and ;"
neurons. In addition to IV variance terms along the main diagonal, there are the
other N? — N covariance terms (when the correlation is nonzero). Assuming
that all the variances are the same and all the coefficients are the same, we can
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specify these terms as follows. When we take the average spike count, each of
the diagonal terms is

s1 _ Var [s] B D1 F [s]
Var [2] = 255 = 25 (10.43)
and each off-diagonal term is
51 _ rVar[s] r¢1E]s]
Var | 2] = T = T (10.44)

The variance of the mean is the sum of the N terms in equation (10.43) plus the
N? — N terms in equation (10.44)

Els ro1E (s
Var[s)=N <¢1N2[ ]) +(N?=N) (%N) (10.45)
From this expression, it is easy to see that in the limit of large N,
A}im Var[s] =r¢1E[s] (10.46)

This limit is a reasonable approximation to the variance of the mean count from
as few as N = 100 neurons in the ensemble.

Pairs of MT neurons with overlapping receptive fields exhibit correlation co-
efficients of » ~ 0.15 to 0.2. This implies that the average spike count from an
ensemble of rightward motion sensors in MT is a random number whose ex-
pectation is the mean spike count from a neuron and whose variance is 0.225
to 0.3 times this expectation. We will use the top end of this range for our exer-
cise below. We will also assume that the right-preferring MT neurons respond
independently from left-preferring MT neurons. In other words, neurons with
common response properties share some of their variability, but neurons with
different preferences do not [38, 3, 16].

When C = 0, right- and left-preferring MT neurons both respond at about 20
sp/s. In 1 second, we expect the mean count from N right-preferring neurons
to be 20 spikes per neuron with a variance of 6 spikes? per neuron®. The same
numbers apply for the left-preferring neurons. Thus, the expected difference
is 0. The variance associated with this difference is 12 spikes? per neuron?,
assuming that the right- and left-preferring MT neurons are independent. For
the strongest rightward motion condition shown in figure 10.5, C = 0.51. In
that case, we expect the mean and variance of the average count from right-
preferring neurons to be 40 spikes per neuron and 12 spikes? per neuron?. For
the left-preferring neurons, the mean and variance are 15 spikes per neuron
and 4.5 spikes? per neuron®. So the difference in the ensemble averages has
expectation and variance of 25 and 16.5, respectively. The signal-to-noise ratio
is 25/1/16.5 ~ 6.2. For motion in the opposite direction, the expectation of the
difference reverses sign, but the variance remains the same. If C = 1, then the
expected difference is 60 — 10 = 50 spikes per neuron with variance (0.3)(60 +
10) = 21. So the signal-to-noise ratio is 50 / V21 =~ 11.
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Based on these assumptions, we plotted in figure 10.6 the expected signal-to-
noise ratio that right- and left-preferring MT neurons furnish in 1 second. We
can see from this example that the signal-to-noise ratio is approximately linear
over the range of motion strengths used in our experiments. The best line in
this figure has a slope of 12.7. Now relate this to the equation for the psycho-
metric and chronometric functions shown in figure 10.1. The fitting equation
presumes that in each millisecond, a random number representing momentary
evidence is drawn from a normal distribution with mean p = kC and variance
1. What is the value of k that would provide the signal-to-noise ratios graphed
in figure 10.6 after 1000 ms? After 1000 samples, the numerator must be 1000y
and the denominator must be the square root of the accumulated variance from
1000 samples. Therefore

1000kC __

000LC — 19.7¢C

k=21 ~ 0.4
1000

(10.47)

This value is remarkably close to the value for k estimated by fitting the be-
havioral data in figure 10.1 (0.43 £ 0.01). Of course, we can also express this
number in terms of #;. Under the assumption that the momentary evidence
in each millisecond is a random draw from a normal distribution with unit
variance and mean equal to kC, 0, = —2;1/02 ~ —0.8C.

The Accumulated Evidence for Direction is Represented by Neurons
in the Lateral Intraparietal Area (LIP)

Several observations argue that the LIP might be a suitable place to mediate
decisions during the motion task. First, neurons in LIP receive a major input
from direction selective neurons in area MT. Second, neurons in LIP project to
the superior colliculus, an area that likely generates the choice response (an eye
movement) [13, 25, 18]. Third, many neurons in LIP discharge in a sustained,
spatially selective fashion when a monkey is instructed to make a delayed eye
movement. This persistent activity can last for seconds before the eye move-
ment is made, and it does not require the continued presence of a visual target.
It is enough to flash a visual cue and to ask the monkey to make an eye move-
ment to its remembered location some time later. Thus LIP neurons should
be capable of representing the outcome of the decision about motion — a plan
to make an eye movement to one of the targets. Indeed their capacity to emit
persistent elevations in firing rate motivates the hypothesis that they can rep-
resent the integral of their inputs — the integral of a pulse is a step in activity.
Thus, we suspected that these neurons might play a role in the conversion of
momentary evidence to a binary decision (for review, see [30]).

During decision-making in the reaction time motion task, neurons in area
LIP undergo ramplike changes in spike rate (figure 10.7). These changes are
evident from ~225 ms after onset of the random-dot motion until the monkey
initiates its eye movement response. The neural activity represents the process
leading to the monkey’s choice, rising when the monkey chooses the target in
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the neuron’s response field (7;,) and declining when the monkey chooses the
target outside the neuron’s response field (75.:). The graphs shown in figure
10.7 were obtained in the choice-reaction time experiments that produced the
behavioral data shown earlier. The responses on the left side of the graph begin
when the motion is turned on and stop at the median reaction time for each
coherence. The responses on the right side of the graph are aligned to the end
of the trial when the monkey initiates an eye movement response either to the
choice target in the response field or to the other target.

During the epoch of decision formation, there is a clear effect of motion
strength on the rate of change in activity. Strong (easy) stimuli cause a rapid
and consistent increase or decrease in the spike rate. Weak (difficult) stimuli
cause smaller increases and decreases that can change direction from moment
to moment and thus meander like a particle in Brownian motion. For all stim-
uli, however, when the spike rate reaches a critical value, a decision for T}, is
reached, and an eye movement ensues ~70 ms later [27]. LIP neurons repre-
sent which choice the monkey will make, the evolution of this decision in time,
and the quality of the evidence upon which this decision is based.

With one important caveat, the responses in figure 10.7 can be related to the
diffusion-to-bound model. The decision variable we focused on in this chapter
is the accumulation of momentary evidence from MT, what we think of as a
difference in spike rates from two ensembles of neurons selective for motion
toward T3, and Ty, respectively. Suppose that beginning 225 ms after onset
of motion, the firing rate of the LIP neuron represents the accumulation of this
spike rate difference. Then its spike rate on any trial will meander like a sam-
ple trajectory shown in figure 10.2 until it reaches a bound. The solid curves in
figure 10.7 are the expected averaged trajectories that end in the upper bound.
They are averages conditionalized on choice. This is why even when the mo-
tion strength is 0%, the average response (solid cyan curve) seems to have a
positive drift. This is true for error trials too (not shown).

The dashed curves force the caveat mentioned above. These are also condi-
tionalized averages, but not to the response reaching a lower bound. For every
LIP neuron with a right-choice target in its receptive fields, there is an LIP neu-
ron with the left-choice target in its receptive fields. According to our ideas,
these neurons also accumulate momentary evidence: a difference in spike rates
from two ensembles of neurons selective for motion toward T},, and T,,;. Of
course these neurons tend to accumulate the evidence with an opposite sign.
If T}, and Ty, refer to right and left for the neuron we are recording, then Tj,
and T, refer to left and right for these other LIP neurons. Suppose these neu-
rons terminate the decision process with a left choice if their firing rates reach
an upper bound. On these trials, the neurons we recorded (which signal right
choices) will tend to decrease their responses because the evidence is against
right. However, the end of the trial is highly variable relative to T;,, neurons be-
cause the recorded neurons are not controlling the end of the trial when motion
is in their null direction. This explains why the response averages shown by
the dashed curves on the right side of figure 10.7 do not come to a stereotyped
lower value before the saccade.
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Rather than a single diffusion process (or random walk) that ends in two
bounds, the physiology forces us to consider a process that is more like a race
between two processes. One gathers evidence for right and against left, say.
The other gathers evidence for left and against right. If these sources of mo-
mentary evidence were exactly the same and if they account for all of the vari-
ability in the LIP firing rates, then the two accumulations would be copies of
one another, simply mirrored around the starting firing rate. If this inverse
correlation were perfect, we could represent the two accumulations on a single
graph with stopping bounds at +A. Of course, the two LIP neurons (or ensem-
bles) are not perfectly anticorrelated. We see evidence for this in the condition-
alized response averages in figure 10.7. But it turns out that so long as the race
is between processes that are to a large extent anticorrelated, the equations we
developed above hold. This is perfectly sensible because although we call this
a race, there is no real competition. When one accumulator takes a positive
step, the other takes a negative step. The correlation is not perfect, but this ten-
dency renders moot any potential for the two mechanisms to actually compete
to reach their respective upper bounds.

It is useful to think of a race between accumulators because this architecture
is likely to extend to decisions among more than two options. It is hard to
see how the model in figure 10.2 would extend to three, four, or more choices
(see [17]). But a race among N accumulators is straightforward [35]. We are
conducting experiments to test these ideas, and they look promising [8].

Conclusions

We have described a framework, diffusion to bound, for understanding how
simple decisions are made in the brain. We have explained the mathemati-
cal tools that allow us to make predictions about the speed and accuracy of
such decisions and have shown that these predictions match the behavior we
observe. Lastly, we have provided evidence that the neural basis for the ma-
chinery we have described is in the parietal cortex.

We hope the mathematical tutorial will be useful to students interested in
applying the equations. Indeed, the more general forms of the equations de-
veloped in terms of #; may provide deeper insight into processes that are less
straightforward than our motion experiments. Insights of fundamental impor-
tance to perception and decision-making can be found in [20, 19].

Decision-making in the random-dot motion task certainly takes place in a
rarefied context: only two choices are present, they are equally probable a pri-
ori, there is only one source of relevant evidence, and all correct answers are of
the same reward value. Yet, even these simplified conditions provide insights
into the basic computations involved in decision-making. By suggesting the
simple framework of accumulation of noisy momentary evidence to bound,
we have a firm foundation from which we can begin to ask questions about
more complicated decisions.

Are there certain kinds of decisions for which simply accumulating evidence
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over time is a poor strategy? Certainly. To integrate, the brain must know
when the relevant information should be gathered. It would be detrimental to
accumulate noise when the stimulus is not present. For example, many detec-
tion experiments in vision show little evidence for temporal integration beyond
~80 ms, the limits of Bloch’s law [36, 37]. Even if there is no uncertainty about
when to integrate, it may make little sense to do so if sufficient information can
be acquired in a short epoch. We suspect that many discrimination problems
in vision involve analyses of spatial correspondences (e.g., curvature, texture,
elongation) that are best achieved on a stable representation of the image in
the visual cortex. These analyses are typically performed in a snapshot, so to
speak, before the pieces of the representation have time to shift about on the
cortical map. While the fidelity of any decision variable could improve with
further temporal integration, we suspect that often the benefit in accuracy is
not sufficient to overcome natural tendencies to trade accuracy against speed.

On the other hand, organisms are faced with many decisions where the evi-
dence is noisy or arrives in piecemeal fashion over time. For decision-making
under these conditions, accumulating evidence in favor of one choice or the
other may be an optimal strategy, and may be well described by a bounded
accumulation model. Ultimately, we would like to know how the brain com-
bines evidence from multiple sources over time with factors associated with
prior probability, predicted costs and benefits of the outcomes, and the cost of
time. We would like to understand the neural mechanisms that underlie the in-
corporation of these factors into the decision process. We are optimistic that the
principles of sequential analysis will guide this research program. Just how far
we can push the kind of simple perceptual decisions described in this chapter
toward achieving this understanding remains to be seen.

Appendix 10.1: Discrete Increments or Summation of Infinitesimals?

From one perspective, there is no particular reason to conceive of the accu-
mulation of increments and decrements in discrete steps. According to this
argument, each At is infinitesimally small: At — 6¢. The random increments
are drawn from a distribution with mean y and variance 2§t. Indeed, the pro-
cess can be written as a stochastic differential equation for the change in the
accumulation, Y:

% =p+N {0, m@} (10.48)
The second term is the noise term, a normal distribution with mean and stan-
dard deviation given by the arguments in the curly braces. The peculiar term
for the standard deviation ensures that the variance of the accumulation is o2
when t = 1. Remember, it is the variance that accumulates, not the standard
deviation. Equation (10.48) gives a glimpse of how one might set up a vari-
ety of accumulation problems, for example, those that involve some leakiness
of the accumulation. For additional reading on this approach, we recommend
[33, 34].
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There are two important points to be made here. First, by moving to the
infinitesimal, we tacitly assume that the random increments are drawn from a
normal distribution. This is simply a consequence of the central limit theorem:
in any finite At, there are so many infinitesimal increments that they must add
to a random number that is Gaussian [33]. So, according to this formulation,
we can forget about other distributions. In short, forget about generalizations
revolving around 6;; according to this formulation, there is only one formula
for 0; (the one in equation (10.25)). The second point counters this position.

A common assumption behind all of the formulations we have considered
is that the increments that are accumulated to form the random walk are in-
dependent of one another. That is why the variance of Y is the sum of the
variances of the increments and not the sum of the covariances. This assump-
tion is suspect in the brain, especially over very short time scales. Responses
from neurons are weakly correlated over a time scale of ~10 to 50 ms [3]. To ob-
tain independent samples of the spike rate from an ensemble of neurons in the
visual cortex, it is essential to wait a minimum of 10 ms between samples (see
[21]). Over very short time scales, and certainly for infinitesimal increments,
independent samples are unlikely to be available in the brain for accumula-
tion. Therefore, when we map the momentary evidence to spike rates from
ensembles of neurons in the brain, it is difficult to embrace the assumption of
independence over very short time scales. For this reason, we think it is use-
ful to consider the random walk process as if it occurs in discrete time with
increments that are not necessarily drawn from a Gaussian distribution.
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Figure 10.5 Response of MT neurons to stimuli with different motion strengths. A.
Responses to motion at 6.4% coherence. Left column shows responses to motion in the
preferred direction, and the right column shows responses to motion in the opposite di-
rection. Top: Rasters of neural spike times. Solid line indicates onset of stimulus motion.
Bottom: Average firing rate. The vertical bar at stimulus onset represents 100 sp/s, and
the horizontal bar under the abscissa shows the 2-second duration of stimulus presenta-
tion. B. Same as A for 25.6% coherence. C. Same as A for 99.9% coherence. (Reproduced
with permission from K. H. Britten, Shadlen, W. T. Newsome, J. A. Movshon, Response
of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10:1157-1169.
©1993 by the Cambridge University Press.)
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Figure 10.6 Estimated signal-to-noise ratio from an ensemble of MT neurons at dif-
ferent motion strengths. The calculations used to make these estimates are described
in the text, and they are based on a stimulus duration of 1 second. The relationship is
approximately linear over the range of motion strengths used in our experiments.
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Figure 10.7 Time course of LIP activity during the reaction time version of the di-
rection discrimination task. Average spike rates for 54 LIP neurons. Responses are
grouped by choice and motion strength. Solid and dashed lines show responses for tri-
als that were terminated with a T3, and T, choice, respectively. The colors indicate the
motion strength. The responses are aligned on the left to the onset of motion stimulus
and drawn only up to the median RT for each motion strength, excluding any activity
within 100 ms of the saccade. The responses on the right are aligned to the initiation of
the saccadic eye movement response, and they are plotted backward in time to the me-
dian RT, excluding any activity occurring within 200 ms of motion onset. Only correct
choices are included except for the 0% coherence case. Adapted with permission from

J. D. Roitman and M. N. Shadlen, [27].
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