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A decision is a commitment to a proposition or plan of action based on information and values associated
with the possible outcomes. The process operates in a flexible timeframe that is free from the immediacy
of evidence acquisition and the real time demands of action itself. Thus, it involves deliberation, planning,
and strategizing. This Perspective focuses on perceptual decisionmaking in nonhuman primates and the dis-
covery of neural mechanisms that support accuracy, speed, and confidence in a decision. We suggest that
thesemechanisms expose principles of cognitive function in general, and we speculate about the challenges
and directions before the field.
Introduction
The study of decision making occurs within psychology, statis-

tics, economics, finance, engineering (e.g., quality control),

political science, philosophy, medicine, ethics, and jurispru-

dence. The neuroscience behind decision making touches on

only a fraction of these areas, although it is a frequent source

of delight when a connection emerges between neural mecha-

nisms and each of these areas. While decision making, per se,

fascinates, what makes the neuroscience of decision making

special is the insight it promises on a deeper topic. For the

neurobiology of decision making is really the neurobiology of

cognition—or at the very least a large component of cognition

that is tractable to experimental neuroscience. It exposes

principles of neural processing that underlie a variety of mental

functions. Moreover, we believe these same principles,

enumerated below, will furnish critical insight into the patho-

physiology of diseases that compromise cognitive function,

and ultimately they will supply the key to ameliorating cognitive

dysfunction.

For this special issue of Neuron’s 25th anniversary, we focus

on a line of research that began almost exactly 25 years ago,

in the laboratory of Bill Newsome. It is an honor to share our

perspective on the field: its roots, an overview of the progress

we have made, and some ideas about some of the directions

we might pursue in the next 25 years.

From Perception to Decision Making
Approximately 25 years ago, Bill Newsome, Ken Britten, and

Tony Movshon recorded from neurons in extrastriate area MT/

V5 of rhesus monkeys while those monkeys performed a

demanding direction discrimination task. They made two impor-

tant discoveries. First, the fidelity of the single-neuron response

to motion rivaled the fidelity of the monkey’s behavioral reports,

in other words, choice accuracy. The fidelity of a neural response

is a characterization of the relationship between its signal-to-

noise ratio (SNR) and the stimulus difficulty level. Second, the

trial-to-trial variability of single neurons—the noise part of ‘‘signal

to noise’’—exhibited a weak but reliable correlation with the trial-

to-trial variability of the monkey’s choices (Newsome et al.,

1989a, 1989b; Britten et al., 1996).
These two observations seemed to imply that the monkey

was basing decisions either on a small number of neurons or,

more likely, a large number of neurons that share a portion of

their variability. Shared variability, termed noise correlation, cur-

tails the expected improvement in performance one would

expect from signal averaging (Box 1). Recall that the SNR of

an average will improve by the square root of the number of in-

dependent samples. However, if the noise is not independent

but instead characterized by weak positive correlation, then

the improvement in SNR approaches asymptotic levels at

50–100 samples, beyond which more samples fail to improve

matters. The levels of correlation seen in pairs of neurons

(nearby neurons that carry similar signals, that is to say, neurons

that one would imagine ought to be averaged) would limit the

improvement in SNR to �2.5 to 3-fold compared to a single

neuron (Zohary et al., 1994).

This simple insight goes a long way toward explaining why sin-

gle neurons can rival a well-trainedmonkey andwhy the variation

from just one neuron (out of the many that could have been

sampled) would exhibit any covariation with the trial-to-trial vari-

ation in the monkey’s responses (Shadlen et al., 1996; Shadlen

and Newsome, 1998).

Signal Detection Theory
The quantitative study of perception, or psychophysics, has

embraced decision theory since its inception by Fechner (Smith,

1994). The focus of psychophysics is to infer from choice

behavior (e.g., present/absent, more/less, left/right) properties

of the sensory ‘‘evidence.’’ How does SNR scale with contrast

or other physical properties of the stimulus? Which stimulus fea-

tures interfere with each other? This inference relies on a deci-

sion stage that connects the representation of the evidence to

the subject’s choice (Figure 1A). The success of psychophysics

and the reason it remains such an influential platform for the

study of decision making is that this decision stage facilitated

rigorous predictions. This is exemplified by the application of

signal detection theory (SDT) to perception (Green and Swets,

1966). We should remind ourselves of this standard as neurosci-

ence moves past the representation of evidence to the study of

the decision process itself.
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Box 1. Noise

One might wonder why the brain would allow for such

inefficiency. There are two answers, which stem from a

deeper truth. First, it probably can’t be helped. To build

responses that are similar enough to be worthy of averaging,

it may be impossible to avoid sharing inputs, and this

leads inevitably to weak noise correlation. Second, the real

benefit of averaging is to achieve a fast representation of

firing rate. A neuron that is receiving a signal should not

have to wait for many spikes to arrive in order to sense

the intensity of the signal it is receiving. Thus it samples

from a pool of many neurons, and the density of spikes

across the pool furnishes a near-instantaneous estimate

of spike rate. So the deeper truth is that neurons in cortex

do not compute with spikes but with spike rate. Moreover,

it is this need for many neurons to represent spike rate in a

fraction of the interval between the spikes of any one neuron

that leads to this particular form of redundancy and the

surfeit of excitation it would bring to a target cell were the

excitation not balanced by inhibition. It is from this insight

that the essential role of balanced E/I in cortical neural cir-

cuits arises. E/I balance in the high-input regime is what

makes neurons noisy in the first place (Shadlen and News-

ome, 1994, 1998), and it requires fine tuning since it must

be maintained over the range of cortical spike rates,

throughout which the spike intervals scale but the time con-

stants of neurons do not. Together, this argument explains

why E/I balance is such a general principle and perhaps

why it seems to be implicated in many disorders affecting

higher brain function.
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One of the great dividends of SDT was its displacement of

so-called ‘‘high-threshold theory,’’ which explained error rates

as guesses arising from a failure of a weak signal to surpass

a threshold. SDT replaced the threshold with a flexible criterion

and this gave a more parsimonious theory of error rates—one

that is consilient with neuroscience. By inducing changes in

the criterion or setting up the experiment to test in a ‘‘crite-

rion-free’’ way, it became clear that errors do not arise because

a signal did not make it past some threshold of activation. The

signal (and noise) is available to the decision stage; it is only a

matter of adjusting the criterion.

There is a larger point to bemade about SDT that distinguishes

it from many other popular mathematical frameworks. It spec-

ifies how a single observation leads to a single response. Other

popular frameworks (e.g., information theory, game theory,

and probabilistic classification) can explain ensemble behavior

captured by psychometric functions (e.g., proportion correct

over many trials), but they provide less satisfying accounts of

the decision process on single trials (DeWeese and Meister,

1999; Laming, 1968). Often they presume that single trials

are random realizations of the probabilities captured by the

ensemble choice frequencies (see Value-Based and Social

Decisions, below). This presumption is antithetical to SDT, which

explains variability of choice using a deterministic decision rule

applied to noisy evidence.
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From Evidence to Decision Variable
In SDT, there is a notion that the raw representation of evidence

gives rise to a so-called decision variable (DV), upon which the

brain applies a ‘‘decision rule’’ to say yes/no, more/less, or cate-

gory A/B. In classic SDT, the DV is a simple transformation of the

sensory data that satisfies the weak constraint that it be mono-

tonically related to likelihood (the probability of observing this

value given a state of the world, such as rightward), and the

decision rule is effectively a comparison to a criterion.

For the motion task, the original idea put forth by Newsome,

Britten, and Movshon (Newsome et al., 1989a) was that the

decision is based on a comparison of the spike counts from a

pair of neurons that are most sensitive to the two directions of

motion (Figure 1B). This is equivalent to saying that the DV

is the difference in the spike counts and the criterion is at

DV = 0 (Figure 1C). There are several implicit assumptions. The

monkey knows which neurons to monitor and counts all the

spikes from these neurons while the stimulus (random dot

motion, RDM) is shown. Moreover, the responses of a neuron

to motion in its antipreferred direction are a proxy for the re-

sponses of another ‘‘antineuron’’ to motion in its preferred direc-

tion. These assumptions were later amended to replace the

neuron-antineuron pair with pools of noisy, weakly correlated

neurons (Britten et al., 1992) and to restrict the epoch of spike

counting to shorter epochs than the entire duration of the stim-

ulus (Kiani et al., 2008; Mazurek et al., 2003). Nonetheless, the

idea remained that the DV can be inferred from recordings of a

single neuron whose direction preference (and receptive field)

are suited to the discriminandum.

The main transformations from the evidence in MT to the DV

are subtraction (i.e., comparison) and the accumulation of spikes

in time, which we will refer to as integration. Both of these trans-

formations are appealing in principle. Regarding the first, a differ-

ence between two positive random numbers yields a new

random variable that is apt for quantifying degree of belief

(Gold and Shadlen, 2002; Shadlen et al., 2006), as we will explain

later. The appeal of integration is that it implies processing on a

time scale that is liberated from the immediacy of the sensory

events. It underlies the most general feature of cognition.

From SDT to Sequential Analysis
In SDT there is no natural explanation for the amount of time it

takes to complete a decision. This is an extremely important

property of decisions, especially when viewed as a window on

cognition. After all, outside the lab, there is no such thing as a trial

structure. Hence, even the simplest of perceptual decisions pre-

suppose decisions about context, which include whether, when,

and for how long to acquire evidence. There are two ways to

answer the how long question: based on elapsed time itself, as

in a deadline, and based on a level of evidence or certainty.

These are not mutually exclusive.

Even for simple perceptual decisions, evidence may be

acquired over timescales greater than the natural integration

times of sensory receptors. For vision, this would encompass a

decision that extends past �60–100 ms (e.g., the limits of

Bloch’s law; Watson, 1986). In that case, we must countenance

an evolving DV that is updated in time. In many situations,

accumulating samples of evidence—that is, some type of
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Figure 1. Psychophysics and Signal
Detection Theory
(A) Psychophysics deploys simple behavioral
measures of detection, discrimination, and identi-
fication to deduce the conversion of physical
properties of stimuli to signals in low-level pro-
cesses. The approach identifies a decision stage
that connects low-level processors to a behavioral
report. L(x,y,t) represents the pattern of luminance
as a function of space and time. Adapted from
Graham (1989).
(B) Application of signal detection theory to a
direction discrimination task. A weak rightward
motion stimulus gives rise to samples of evidence
from the rightward- and leftward-preferring neu-
rons, respectively, conceived as random draws of
average firing rate from the two pools. The decision
rule is to choose the direction corresponding to the
larger sample of the pair. Most sample pairs will
exhibit the correct sign of the inequality (right
sample > left sample), but the overlap of the dis-
tributions occasionally gives rise to the opposite
inequality, hence an error.
(C) The depiction in (B) can be simplified by sub-
tracting the left sample from the right to construct
a single difference (D) in firing rate. The dis-

tribution has a mean equal to the difference of the two means in (B) and a variance equal to the sum of the two variances. The decision rule is to choose
rightward if D > 0. The error rate is the total probability of D < 0, that is, the area to the left of the criterion line at D = 0.
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integration—may be sensible. We wish to emphasize, however,

that integration is not the only operation that can be used for

decision making. Different operations may be advantageous in

different contexts (e.g., differentiation for a detection task, or

belief propagation for inference about whether two parts of an

object are connected).

Nonetheless, a simple but powerful idea is that in many situa-

tions evidence is accumulated to some threshold level, whence

the decision terminates in a choice, even if provisional (Resulaj

et al., 2009). If the two directions are equally likely (i.e., neutral

prior probability), then we represent the process as an accu-

mulation of signal plus noise to symmetric decision bounds

(Figure 2A). The upper and lower bounds support termination

in favor of a right or left choice, respectively. In the brain, this pro-

cess looks more like a race between two mechanisms, one that

accumulates evidence for right (against left), and the other that

does the opposite (Figure 2B). This detail matters for correspon-

dence with the physiology (Figure 3).

The beauty of this idea is that a single mechanism can thus

account for both which decision is made and how much time

(or howmany samples) it takes to commit to an answer—in other

words, the balance between accuracy and speed. As shown in

Figure 3B the framework is so powerful that one can fit the reac-

tion time data to establish themodel parameters—an estimate of

the bound height and a coefficient that converts motion strength

to units of SNR—and then predict the accuracy at each of the

motion strengths (solid curve, upper graph). This is a rare feat

in psychophysics: to make a set of measurements and to use it

to predict another. It convinced us that there is merit to the

idea (Box 2).

There is another virtue of evidence accumulation that is not yet

widely appreciated. It establishes a mapping between a DV and

the probability that a decisionmade on the basis of this DVwill be

the correct one. Indeed, the brain appears to have implicit knowl-

edge of this mapping, which it uses to assign a sense of certainty
or confidence about the decision. Confidence is crucial for guid-

ing behavior in a complex environment. It affects how we learn

from our mistakes and justify our decisions to others, and it

may be essential when making a decision that depends on a

previous decision whose outcome (e.g., correct or not) is not

yet known.

Until recently confidence has been largely ignored in neurosci-

ence, in large part because it seemed impossible to measure

behaviorally in nonverbal animals. However, introduction of

postdecision wagering has begun to change this (Hampton,

2001; Kepecs et al., 2008; Kiani and Shadlen, 2009; Kornell

et al., 2007; Middlebrooks and Sommer, 2012; Shields et al.,

1997). The strategy is to allow an animal to opt out of a decision

for a secure but small reward, a ‘‘sure bet.’’ The testable

assertion is that the animal uses this option to indicate lack of

confidence on the main decision. The assertion can be tested

by comparing choice accuracy under two conditions: trials

in which the animal is not given the ‘‘sure bet’’ option and trials

in which the option is available but waived. In both cases the

animal renders a decision. If it takes the sure bet more frequently

when the evidence is less reliable, then it ought to improve its

accuracy on the remaining trials. This prediction has been

confirmed experimentally (Hampton, 2001; Kiani and Shadlen,

2009).

The mapping between the DV and the probability of being cor-

rect explains certainty and provides a unified theory of choice,

reaction time (RT), and confidence. The mapping for the RDM

experiment is shown by the heat map in Figure 2C. This mapping

is more sophisticated than a monotonic function of the amount

of evidence accumulated for the winning option. We think it

also involves two other quantities: the evidence that has been

accumulated for the losing alternatives and the amount of time

that has elapsed, or really the number of samples of evidence.

The first of these was proposed by Vickers to explain the ob-

servation that stimulus difficulty affects confidence even in RT
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 793
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Figure 2. Bounded Evidence Accumulation Explains Decision Accuracy, Speed, and Confidence
(A) Drift diffusion with symmetric bounds. Noisy momentary evidence for/against hypotheses h1 and h2 is accumulated (irregular trace) until it reaches an upper or
lower termination bound, leading to a choice in favor of h1 or h2. In themotion task, h1 and h2 are opposite directions (e.g., right and left). Themomentary evidence
is the difference in firing rates between pools of direction-selective neurons that prefer the two directions. At each moment, this difference is a noisy draw from a
Gaussian distribution (inset) with mean proportional to motion strength. The mean difference is the expected drift rate of the diffusion process. The process
reconciles the speed and accuracy of choices with two parameters, bound height (± A) and mean of e. If the stimulus is extinguished before the accumulated
evidence reaches a bound, then the decision is based on the sign of the accumulation.
(B) Competing accumulators. The same mechanism is realized by two accumulators that race. If the evidence for h1 and h2 are opposite, then the race is
mathematically identical to symmetric drift diffusion. The race is a better approximation to the physiology, since there are neurons that represent accumulated
evidence for each of the choices. This mechanism extends to account for choices and RT when there are more than two alternatives. If the stimulus is ex-
tinguished before one of the accumulations reaches a bound, then the decision is based on the accumulator with the larger value (as in Figure 1B).
(C) Certainty. The heat map displays the correspondence between the state of the accumulated evidence in panel (A) and the log of the odds that the decision it
precipitates will be the correct one. The mapping depends on the possible difficulties that might be encountered. This corresponds to the possible motion
strengths in the direction discrimination experiments. The mapping does not depend on presence or shape of the bound. Notice that the same amount of
accumulated evidence supports less certainty as time passes. Cooler colors indicate low certainty (e.g., log odds equal to 0 implies that a correct choice and an
error are equally likely). In the postdecision wagering experiment, the monkey opts out of the discrimination and chooses the sure-but-small reward when the
accumulated evidence is in the low certainty (cooler) region of the map.
Adapted from Gold and Shadlen (2007) and from Kiani and Shadlen (2009).
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experiments (Vickers, 1979). If there were just one DV, and if it

were stereotyped at the end of the decision, there would be no

explanation for different levels of confidence. The second,

elapsed time, shapes the monotonic relationship between the

DV and confidence so that the same DV can map to different

degrees of confidence (note the curved iso-certainty contours

in Figure 2C). The intuition is as follows. The reliability of the

evidence is often unknown to the decision maker at the begin-

ning of deliberation (i.e., the first sample of evidence). If time

goes by and the DV has not meandered too far from its origin,

then it is likely that the evidence came from a less reliable source

(e.g., a difficult motion strength). This insight suggests that brain

structures such as orbitofrontal cortex, which represent quanti-

ties dependent on certainty (e.g., expected reward), must have

access to the relevant variables: elapsed decision time, the

DV, and any variables that would corrupt the correspondence

between the DV and accumulated evidence (e.g., the urgency

signal described below).

A Neural Correlate of a Decision Variable
The question is where to look in the brain for a neural correlate of

a decision variable. The main criterion must be the existence of

temporally prolonged responses that are neither purely motor
794 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
nor purely sensory but that reveal aspects of both. Other criteria

are access to the motion evidence and access to the oculomo-

tor system (since the animal reports direction with a saccade to

a target), but the responses should outlast the immediate re-

sponses of visual cortical neurons and they cannot precipitate

an eye movement. The lateral intraparietal area (LIP) seemed

an obvious candidate (Shadlen and Newsome, 1996; Glimcher,

2001). LIP was defined as the part of Brodmann area 7 that

projects to brain structures involved in the control of eye move-

ments (Andersen et al., 1990). It receives input from the appro-

priate visual areas and the pulvinar, and its neurons are known

to respond persistently through intervals of up to seconds

when an animal is instructed—but required to withhold—a

saccade to a target (Barash et al., 1991; Gnadt and Andersen,

1988). It seems obvious that one could construct a task like a

delayed eye movement and to substitute a decision about

motion for the instruction. Under this condition, LIP neurons

ought to, at the very least, signal the monkey’s answer in the

delay period after the decision is made. In other words, the neu-

rons should signal the planned saccade to (or away from) the

choice target in its receptive field (RF). That was immediately

confirmed—no surprise, as it was almost guaranteed by target-

ing LIP.



Box 2. The Death and Resurrection of a Theory

Here is a cautionary tale that ought to interest theorists, experimentalists, philosophers, and historians of science. The concept of

bounded evidence integration originated in the field of quality control, which draws on statistical inference from sequential samples

of data. Abraham Wald began this secretly as a way to decide whether batches of munitions were of sufficient quality to ship. He

developed the sequential probability ratio test as the optimal procedure to test a hypothesis against its alternative, using the min-

imal number of samples (effectively a speed versus accuracy tradeoff) (Wald, 1947; Wald and Wolfowitz, 1947). The test involves

accumulation of evidence in the form of a log-likelihood ratio (logLR; or a proportional quantity) to a pair of terminating bounds,

which trigger acceptance of the respective hypotheses. Alan Turing developed the same algorithm as a part of his code-breaking

work in WWII (Gold and Shadlen, 2002; Good, 1979). A decade later, several psychologists recognized the implications for choice

and reaction time (RT) (e.g., Laming, 1968; Stone, 1960). However, the field realized that thismodel predicts that for a fixed stimulus

strength (e.g., 12% coherent motion), the mean RT for correct and erroneous choices should be identical. In fact, the distributions

should be scaled replicas of one another. This prediction was clearly incorrect. In experiments like the ones described in this essay,

errors are typically slower, and the apparent refutation led the field to abandon themodel. A few stubborn individuals stuck with the

bounded accumulation framework (e.g., Stephen Link and Roger Ratcliff), but there was little enthusiasm from the community of

psychophysics and almost no penetration into neuroscience.

It turns out that the prediction was misguided. There is no reason to assume the terminating bounds are flat (i.e., constant as a

function of elapsed decision time). If the conversion of evidence to logLR is known or if the source of evidence is statistically sta-

tionary, then flat bounds are optimal in the sensementioned above. But if the reliability is not known (e.g., themotion strength varies

from trial to trial) or there is an effort cost of deliberation time (within trial), then the bounds should decline as a function of elapsed

decision time (Busemeyer and Rapoport, 1988; Drugowitsch et al., 2012; Rapoport and Burkheimer, 1971). Uncertainty about reli-

ability implies a mixture of difficulties across decisions (i.e., experimental trials). Intuitively, if after many samples, the accumulated

evidence is still meandering near the neutral point, then it is likely that the source of evidence was unreliable and the probability of

making a correct decision is less likely. This leads to a normative solution to sequential sampling inwhichbounds collapse over time.

This results in slow errors simply because errors are more frequent when the bounds are lower. There are other solutions to this

dilemma (Link and Heath, 1975; Ratcliff and Rouder, 1998), but we favor the collapsing bounds because it is more consistent

with physiology (e.g., the urgency signal).

This is a cautionary tale about the application of normative theory. In this case there was amistaken assumption that a normative

model would apply more widely than the conditions of its derivation. There is also the question of what is optimized. It is also a

cautionary tale about the role of experimental refutation. Sometimes it is worthwhile to persist with a powerful idea even when

the experimental facts seem to offer a clear contradiction. If only we knew when to do this!
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Far more interesting, however, were the dynamical changes in

the neural firing during the period of random dot viewing. The

evolution of this activity occurs in just the right time frame for

decision formation (Figure 3). Indeed, the average firing rate in

LIP approximates the integration (i.e., accumulation) of the differ-

ence between the averaged firing rates of pools of neurons in MT

whose RFs overlap the random dot motion stimulus. It is known

that the firing rate of MT neurons is approximated by a constant

plus a value that is proportional to motion strength in the

preferred direction (Britten et al., 1993). For motion in the oppo-

site direction, the response is approximated by a constant minus

a value proportional to motion strength. The difference is simply

proportional to motion strength. Interestingly, in LIP, the initial

rate of rise in the average firing rate is proportional to motion

strength (Figure 3C, inset), suggesting that the linking computa-

tion is integration with respect to time (Roitman and Shadlen,

2002; Shadlen and Newsome, 1996).

This integration step is supported directly by inserting brief

motion ‘‘pulses’’ in the display and demonstrating their lasting

effect on the LIP response, choice, and RT (Huk and Shadlen,

2005). Moreover, the signal that is integrated is noisy, giving

rise to a neural correlate of both drift and diffusion. The former

is evident in the mean firing rates of LIP, whereas the latter is

adduced from the evolving pattern of variance and autocorrela-

tion of the LIP response across trials (Churchland et al., 2011).
Together, these observations make a strong case for the repre-

sentation of the integral of the sensory signal plus noise, begin-

ning�200ms after onset of motion. This is a long time compared

to visual responses of neurons in MT and LIP, but remember, this

is not a visual response. The RDM is not in the response field of

the LIP neuron. The brain must establish a flow of information

such that motion in one part of the visual field bears on the

salience of a choice target in another location (Figure 3A). Below,

we refer to this operation as ‘‘circuit configuration.’’ It is one of

the mysteries we hope to understand in the next decade. It is

unlikely to be achieved by direct connections from MT to LIP.

It requires too much flexibility. Indeed, a cue at the beginning

of a trial can change the configuration of what evidence supports

what possible action. This is whywe believe that even this simple

task involves a level of function that is more similar to the flexible

operations underlying cognition than it is to the specialized pro-

cesses that support sensory processing.

Recall that the behavioral data—choice and RT—support the

idea that each decision terminates when the DV reaches a

threshold or bound. A neural correlate of this event can be

seen in the traces in Figure 3D, which shows the responses lead-

ing up to a decision in favor of the target in the response field (Tin).

The responses achieve a stereotyped level of firing rate 70–

100 ms before the eye movement. So the bound or threshold

inferred from the behavior has its neural correlate in a level of
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 795
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Figure 3. Neural and Behavioral Support for
Bounded Evidence Accumulation
(A) Choice-reaction time (RT) version of the direc-
tion discrimination task. The subject views a
patch of dynamic random dots and decides the
net direction of motion. The decision is indicated
by an eye movement to a peripheral target. The
subject controls the viewing duration by termi-
nating each trial with an eye movement whenever
ready. The gray patch shows the location of
the response field (RF) of an LIP neuron. One of
the choice targets is presented in the RF. RT, re-
action time.
(B) Effect of stimulus difficulty on choice accuracy
and decision time. The solid curve in the lower
graph is a fit of the bounded accumulation model
to the reaction time data. The model can be used
to predict the monkey’s accuracy (upper graph).
The solid curve is the predicted accuracy based on
bound and sensitivity parameters derived from the
fit to the RT data.
(C) Response of LIP neurons during decision for-
mation. Average firing rate from 54 LIP neurons is
shown for six levels of difficulty. Responses are
grouped by motion strength (color) and direction
(solid/dashed toward/away from the RF); they
include all trials, including errors. Firing rates are
aligned to onset of random-dot motion and trun-
cated at the median RT. Inset shows the rate of
rise of neural responses as a function of motion
strength. These buildup rates are calculated based
on spiking activity of individual trials 200–400 ms
after motion onset. Data points are the averaged
normalized buildup rates across cells. Positive/
negative values indicate increasing/decreasing
firing rate functions.
(D) Responses grouped by reaction time and
aligned to eye movement. Only Tin choices are
shown. Arrow shows the stereotyped firing rate
�70 ms before saccade initiation.
Adapted from Roitman and Shadlen (2002).
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firing rate in LIP. This holds for the Tin choices, but not when the

monkey makes the other choice. The idea is that this is when

the firing rate of another population of LIP neurons—the ones

with the other choice target in their response fields—reach a

threshold.

One implication is that the bounded evidence accumulation is

better displayed as a race between two DVs, one supporting

right and the other supporting left, as mentioned earlier (Fig-

ure 2B). This is convenient because it allows the mechanism

to extend to decisions among more than two options (Bolli-

munta et al., 2012; Churchland et al., 2008; Ditterich, 2010;

Usher and McClelland, 2001). It is just a matter of expanding

the number of races. With a large number of accumulators the

system can even approximate direction estimation (Beck

et al., 2008; Furman and Wang, 2008; Jazayeri and Movshon,

2006). A race architecture also introduces some flexibility into

the way the bound height is implemented in the brain. In

behavior, when a subject works in a slow but more accurate

regime, we infer that the bound is further away from the starting

point. Envisioned as a race, the change in excursion can be

achieved by a higher bound or by a lower starting point. It

appears that the latter is more consistent with physiology

(Churchland et al., 2008).
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A race architecture also provides a simple way to incorporate

the cost of decision time (Drugowitsch et al., 2012) or deadline

(Heitz and Schall, 2012). One might imagine decision bounds

that squeeze inwardasa functionof time, thereby lowering thecri-

terion for termination. However, the brain achieves this by adding

a time-dependent (evidence-independent) signal to the accumu-

lated evidence,whichwe refer to as an ‘‘urgency’’ signal (Church-

land et al., 2008; Cisek et al., 2009). The urgency signal adds to

the accumulated evidence in all races, bringing DVs closer

to the bound rather than bringing the bounds closer to the DVs.

The bound itself is a fixed firing rate threshold (as in Figure 3D,

see also Hanes and Schall, 1996). This suggests that the termina-

tion mechanism could be achieved with a simple threshold

crossing, unencumbered by details such as the cost of time, the

tradeoff between speed and accuracy, and other policies that

affect the decision criteria. By implementing these policies in

areas like LIP, the brain can use the same mechanism to sense

a threshold crossing yet exercise different decision criteria for

different processes. For example, it may take less accumulated

evidence to decide to look at something than to grasp or eat it.

We are suggesting that different brain modules, support-

ing different provisional intentions, can operate on the same in-

formation in parallel and apply different criteria (Shadlen et al.,



Box 3. Emerging Principles

The neurobiology of decision making has exposed features of

computation and neural processing that may be viewed as

principles of cognitive neuroscience.

d Flexibility in time. The process is not tied reflexively to

immediate changes in the environment or to the real time

demands of motor control.

d Integration. The process involves an accumulation of evi-

dence in timeor frommultiplemodalities or across spaceor

possibly across propositions (as in a directed graph).

d Probabilistic representation.Neural firing rates are asso-

ciated with a degree of belief or degree of commitment to a

proposition. This is facilitated by converting a sample of

evidence, e, to a difference between firing rates of neurons

that assign positive and negative weight to e, with respect

to a proposition (Gold and Shadlen, 2001; Shadlen et al.,

2006).

d Direct representation of a decision variable. Neurons

represent in their firing rates a combination of quantities

in a low-dimensional variable that supports a decision.

The DV greatly simplifies the process leading to commit-

ment and the certainty or confidence that the decision

will be correct.

d Continuous flow. Partial information, or an evolving deci-

sion variable, can affect downstream effector structures

despite the fact that these effectors are only brought into

play after the decision is made.

d Termination. The decision process incorporates a stop-

ping rule based on the state of evidence and/or time.

This is an operation like thresholding, applied to the DV.

d Intentional framework. The word intentional is meant to

contrast with ‘‘representational.’’ The suggestion is that in-

formation flow is not toward progressively abstract con-

cepts but is instead in the service of propositions, which

in their simplest rendering resemble affordances or provi-

sional intentions. (Cisek, 2007; Shadlen et al., 2008).

Although no action need occur, many decisions are likely

to obey an organization from the playbook of a flexible sen-

sory tomotor transformation. In one sense, this justifies the

existence of a DV in brain areas associated with directing

the gaze or a reach.
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2008). This insight effectively reconciles SDT with high-threshold

theory: the bound is the high threshold, but it (via the starting

point) is also an adjustable criterion, which may be deployed

differently depending on policies and desiderata. As explained

later, this parallel intentional architecture lends insight into seem-

inglymysterious distinctions, such as preparationwithout aware-

ness of volition (Haggard, 2008), subliminal cuing, and noncon-

scious cognitive processing (Dehaene et al., 2006; Del Cul

et al., 2009). Put simply, too little evidence to pierce conscious-

ness might be enough information to prepare another behavior.

The key is to recognize consciousness as just another kind of

decision to engage in a certain way (Shadlen and Kiani, 2011).

To be clear, we suspect that LIP is one of many areas that

represent a DV, and it does so only because the decision before

themonkey is not ‘‘Which direction?’’ but ‘‘Which eyemovement

target?’’ Other areas are involved if the decision is about reach-

ing to a target (e.g., Pesaran et al., 2008; Scherberger and Ander-

sen, 2007) and still others, presumably, if the decision is about

whether an item is a match or nonmatch, for example (Tosoni

et al., 2008; but see Heekeren et al., 2006). This, however, will

remain a matter of speculation until a neural correlate of a DV

is demonstrated in these situations.

We place emphasis on the DV because it is a level of represen-

tation that can be dissociated from sensory processing of evi-

dence and motor planning. The DV is not the decision. It is built

from the evidence, it incorporates other signals related to value,

time, and prior probability, and it must be ‘‘read out’’ by neurons

that sense thresholds, calculate certainty, and trigger the next

step, be it a movement or another decision. The argument is

not that all decisions require long integration times but that those

that do permit insights that are otherwise difficult to attain. To

support a neural correlate of a DV, we must at least try to (1)

distinguish the response from a sensory response, (2) distinguish

it from a motor plan reflecting only the outcome of the decision,

and (3) demonstrate a correspondence with the decision pro-

cess. To achieve these we need more than tests of whether

mean responses are different under choice A versusB.Wewould

like to reconcile quantitatively the neural responsewith the DV in-

ferred from a rich analysis of behavior: error rates, reaction time

means and distributions, confidence ratings. We say try because

there are reasons we do not expect complete satisfaction on any

of these criteria. For example the motor system might reflect the

DV (Gold and Shadlen, 2000; Selen et al., 2012; Song and Na-

kayama, 2008, 2009; Spivey et al., 2005), and noisy sensory re-

sponses often bear a weak relationship to choice (Britten et al.,

1996; Nienborg and Cumming, 2009; Parker and Newsome,

1998; Uka and DeAngelis, 2004; Celebrini and Newsome, 1994;

Cook and Maunsell, 2002). Nonetheless, for the case of motion

bearing on a choice target in the response fields of LIP neurons,

the correspondence to a DV seems reasonably compelling.

Principles, Extensions, and Unknowns
Box 3 summarizes some of the principles that have arisen from a

narrow line of investigation. We would like to think that such prin-

ciples will apply more generally to many types of decisions,

including those of humans (Kayser et al., 2010; Donner et al.,

2009; Heekeren et al., 2004; O’Connell et al., 2012; Philiastides

and Sajda, 2007), and to other cognitive functions that bear no
obvious connection to decision making. Of course, many princi-

ples are yet to be discovered, and even those that seem solid are

not understood at the refined circuit level that will be required to

reap the benefits of this knowledge in medicine. From here on,

we will branch outward, beginning with other types of perceptual

decisions, then decisions that are not about perception, and on

to aspects of cognition that do not at first glance appear to have

anything to do with decision making but that may benefit from

this perspective.

Other Perceptual Decisions
Visual neuroscience was poised to contribute to the neurobi-

ology of decision making because of a confluence of progress

in psychophysics (Graham, 1989), quantitative reconciliation of
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signal and noise in the retina (Barlow et al., 1971; Parker and

Newsome, 1998), the successful application of similar quantita-

tive approaches to understanding processing in primary visual

cortex (e.g., Tolhurst et al., 1983), and emerging detailed knowl-

edge of central visual processes beyond the striate cortex

(Maunsell and Newsome, 1987). The move to more central rep-

resentations of signal plus noise led to the measurements from

Newsome et al. in the awake monkey, described above. We

also believe that the discovery of persistent neural activity in pre-

frontal and parietal association cortex (Funahashi et al., 1991;

Fuster, 1973; Fuster and Alexander, 1971; Gnadt and Andersen,

1988) was key. An obvious but fruitful step will be the advance-

ment of knowledge about other perceptual decisions, involving

other modalities.

Touch

Vernon Mountcastle spearheaded a quantitative program linking

the properties of neurons in the somatosensory system to the

psychophysics of vibrotactile sensation. The theory and the

physiology were a decade ahead of vision (Johnson, 1980a,

1980b; Mountcastle et al., 1969), but the link to decision making

did not occur until recently. The main difficulty was the reliance

on a two-interval comparison of vibration frequency that required

a representation of the first stimulus inworkingmemory. Thiswas

absent in S1. Recently, Ranulfo Romo and colleagues advanced

this paradigmby recording fromassociation areas of the prefron-

tal cortex,where there isnowcompellingevidence for a represen-

tation of the first frequency in the interstimulus interval as well as

the outcome of the decision (Romo and Salinas, 2003). There are

also hints of a representation of an evolving DV in ventral premo-

tor cortex (Hernandez et al., 2002; Romo et al., 2004), but the

period in which the decision evolves (during the second stimulus)

is brief and thus hard to differentiate from a sensory representa-

tion and decision outcome. Nonetheless, this paradigm has

taught us more about the prefrontal cortex involvement in deci-

sion making than vision, which has focused mainly on posterior

parietal cortex. Somatosensory discrimination also holds

immense promise for the study of decision making in rodents.

Texture discrimination via the whiskers has particular appeal

because it involves an active sensing component (i.e., whisking)

and integration across whiskers, hence cortical barrels and

time (e.g., Diamond et al., 2008).

Smell and Taste

This perceptual system and the experimental methods are far

better developed in rodents than in primates. The chief advan-

tage of the system is its molecular characterization based on

Axel and Buck’s discovery of the odor receptors (ORs) (Buck

and Axel, 1991) and the organization they imposed on a chemical

map in the olfactory bulb (Ressler et al., 1994; Rubin and Katz,

1999), but the system is not without its challenges. Odors are

difficult to control spatially and temporally, and despite the

elegant organization of the sensory system through the olfactory

bulb, we do not know the natural ligands for most ORs. Perhaps

the biggest drawback of the system is that it has proven difficult

to establish an integration window that is longer than a sniff

(Uchida et al., 2006). These challenges notwithstanding, we

believe olfactory decisions will allow the field to exploit the power

of molecular biology to delve deeper into refined mechanisms

underlying the principles in Box 3. Similar considerations apply
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to gustatory decisions (Chandrashekar et al., 2006; Chen et al.,

2011; Miller and Katz, 2010). Animals naturally forage for food.

Presumably, they can be coerced to deliberate. Indeed, the

learning literature is full of experiments that can be viewed

from the perspective of perceptual decision making (e.g., Bun-

sey and Eichenbaum, 1996; Pfeiffer and Foster, 2013). It might

be argued that learning is the establishment of the conditions

under which a circuit will be activated. We speculate below

that this might be regarded as a change in circuit configuration

that is itself the outcome of a decision process.

Hearing

Signal detection theorymade its entry into psychophysics via the

auditory system, but the neurophysiology of cortex was decades

behind somatosensory and visual systems neuroscience. There

has been tremendous progress in this field over the past 10–20

years (e.g., Beitel et al., 2003; Recanzone, 2000; Zhou and

Wang, 2010), but there may be a fundamental problem that will

be difficult to overcome. It seems that there is a paucity of asso-

ciation cortex devoted to audition in old world monkeys (Por-

emba et al., 2003). Just where the intraparietal sulcus ought to

pick up auditory association areas, it vanishes to lissencephaly.

One wonders if the auditory association cortex is a late bloomer

in old world monkeys. Perhaps this is why language capacities

developed only recently in hominid evolution.

Interval Timing

We do not sense time through a sensory epithelium, but timing

is key to many aspects of behavior, especially foraging and

learning. Interval timing exhibits regularities that mimic those of

traditional sensory systems. The best known is a strong version

of Weber’s law (i.e., the just noticeable difference is proportional

to the baseline for comparison) known as scalar timing (Gallistel

and Gibbon, 2000; Gibbon et al., 1997). In our experience, ani-

mals learn temporal contingencies far more quickly than they

learn the kinds of visual tasks we employ in our studies. Among

the first things an animal knows about its environment are the

temporal expectations associated with a strategy. Of all the

‘‘senses’’ mentioned, interval timing may be the easiest to train

an animal on. There are challenges, to be sure, since time is

not represented the way vision or olfaction is. But it is repre-

sented in the form of an anticipation (or hazard) function by the

same types of neurons that represent a DV (Leon and Shadlen,

2003; Janssen and Shadlen, 2005), and we suspect that these

types of operations are a ubiquitous feature of the association

cortex. It is the price it pays for freedom from the immediacy of

sensation and action. Deciding when is as important as deciding

whether. Interestingly, it has been proposed that deciding when

can be explained by a bounded accumulation mechanism like

the one in Figure 2A (Simen et al., 2011).

Beyond Perceptual Decisions
Obviously, not all decisions revolve around perception. This sec-

tion serves a dual purpose: (1) to extend and amend principles

that arise in other types of decisions that have been studied in

neurophysiology and (2) to examine a few cognitive processes

from the perspective of decision making.

Value-Based and Social Decisions

An open question is whether the neural mechanisms underlying

perceptual decisions are similar to those involving decisions
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about value and social interactions (Rorie and Newsome, 2005).

Value-based decisions involve choices among goods, money,

food, and punishments. Social decisions involve mating,

fighting, sharing, and establishing dominance. Both incorporate

evidence (e.g., what is the valence of the juice or what is my rival

about to do), but the process underlying these assessments is

not the focus, because this is typically the easy part of the prob-

lem—analogous to an easy perceptual decision (Deaner et al.,

2005; Platt and Glimcher, 1999; Rorie et al., 2010; Padoa-

Schioppa, 2011). As we pointed out earlier in the essay, value

has been integrated into signal detection theory and all mathe-

matical formalisms of decision theory in economics. We would

like to focus on one issue that might distinguish value-based

and social decision making from perceptual decision making. It

concerns an almost philosophical issue about randomness in

behavior.

It is common to model many social decisions as competitive

games. This has led to the concept of a premium on being unpre-

dictable. If this is correct, then social decisions differ fundamen-

tally from perceptual decisions, because the former embraces a

decision rule that is effectively a consultation with a random

number generator. Consider a binary choice and imagine that

the brain has accumulated evidence that renders one choice

better than the other with probability 0.7. According to some

game-theoretic approaches, the agent should choose that

option probabilistically as if flipping a weighted coin that will

come up heads with probability 0.7 (Barraclough et al., 2004;

Glimcher, 2005; Karlsson et al., 2012; Lau and Glimcher, 2005;

Sugrue et al., 2005) (but see Krajbich et al., 2012; Webb, 2013).

This way of thinking is antithetical to the way we think about

the variation in choice in perceptual decisions. Such variation

arises because the evidence is noisy. In the discussion of cer-

tainty (above), we pointed out that a DV is associated with a

probability or degree of belief, but the decision rule is itself deter-

ministic. For example, suppose that in the RDM task, on some

trial, the DV is positive (meaning favoring rightward) and happens

to correspond to p = 0.7 that the rightward choice is correct. The

decision is not rendered via consultation with a random number

generator to match the probability 0.7. The stochastic variation

(across repetitions) arises by selection of the best option in

each instance. The variation is explained by signal-to-noise

considerations on an otherwise deterministic mechanism. Put

another way, suppose that amonkey actually achieves 70% cor-

rect rightward choices on 100 trials of a weak rightward RDM

display. The job of the neuroscientist is to explain why the DV

is on the wrong side of the choice criterion on 30% of trials.

This requires reconciliation of evidence strength, noise, and

biases owing to asymmetric values placed on the options. The

assumption that the decision process is itself random—that is,

beyond the inescapable noise—could lead to incorrect conclu-

sions about value and cost. For example, it would nullify a divi-

dend for exploration, which comes for free by flipping a weighted

coin (or applying the popular ‘‘softmax’’ operation) (Daw et al.,

2006).

Probabilistic Reasoning

Humans and monkeys can learn complex reasoning that in-

volves probabilistic cues. For example, in a version of the

weather prediction task (Knowlton et al., 1996, 1994) a monkey
views a sequence of probabilistic cues (ten possible shapes)

that bear on an outcome, analogous to rain and sunshine. The

monkey then decides which is the better choice (Yang and Shad-

len, 2007). Behaviorally, the monkeys seem to reason rationally

by assigning weights proportional to the log likelihood that a

cue would support one choice or another. The strategy reduces

the inference process to the integration of evidence in appro-

priate units. Interestingly, the firing rates of parietal neurons

represent this accumulation of evidence in units proportional to

log-likelihood ratio (logLR ) (movies of neural responses during

this task can be viewed online at http://www.nature.com/

nature/journal/v447/n7148/suppinfo/nature05852.html). We do

not know how this occurs, but it must involve learning to asso-

ciate each cue (shape) with an intensity or weight. As in the

RDM task, the capacity of the brain to accumulate evidence in

units of logLR could serve as a basis of rationality. Note the

connection to the confidence map (Figure 2C). The firing rates

of neurons in the association cortex represent—through addi-

tion, subtraction, and accumulation—a degree of belief in a

proposition. We would like to think that this principle will apply

more generally to neural computations in association cortex

(Box 3).

Memory Retrieval

In Box 2, we mentioned that Roger Ratcliff effectively saved

bounded evidence accumulation (or bounded drift diffusion)

from the dustbin. Interestingly, his efforts focused largely on lex-

ical decisions involving memory retrieval (Ratcliff, 1978; Ratcliff

and McKoon, 1982). It is intriguing that the speed and accuracy

of memory retrieval would appear to be explained by a process

resembling the bounded accumulation of evidence bearing on a

perceptual decision. Without taking the analogy too literally, the

observation suggests that there is a sequential character to the

memory retrieval. Perhaps the ‘‘a-ha’’ moment of remembering

involves a commitment to a proposition based on accumulated

evidence for similitude. Related ideas have been promoted by

memory researchers investigating the role of the striatum in

memory retrieval (e.g., Donaldson et al., 2010; Schwarze et al.,

2013; Scimeca and Badre, 2012; Wagner et al., 2005). This is

intriguing since the striatum is suspected to play protean roles

in perceptual decision making too: value representation, time

costs, bound setting, and termination (Bogacz and Gurney,

2007; Ding and Gold, 2010, 2012; Lo and Wang, 2006; Malapani

et al., 1998). Of course, memory retrieval is the source of evi-

dence in most decisions that are not based on evidence from

perception. The process could impose a sequential character

to the evidence samples that guide the complex decisions that

humans make (Giguère and Love, 2013; Wimmer and Shohamy,

2012). If so, integrating these fields of study might permit exper-

imental tests of the broad thesis of this essay—that the principles

and mechanisms of simple perceptual decisions also support

complex cognitive functions of humans.

Finally, one cannot help but wonder: if memory retrieval re-

sembles a perceptual decision, perhaps we should view storage

as a strategy to encode degree of similitude so that the recall

process can choose correctly—where choice is activation of a

circuit and its accompanying certainty. For example, the assign-

ment of similitude might resemble the process that we exploited

in Yang’s study of probabilistic reasoning (see above). Recall
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that the monkeys effectively assigned a number to each of the

shapes. Each time a shape appeared, it triggered the incorpora-

tion of a weight into a DV. That is, the shape activated a parietal

circuit that assembles evidence for a hypothesis. Perhaps some-

thing like this happens when we retrieve a memory. The cue to

the memory is effectively the context that establishes a ‘‘related-

ness’’ hypothesis, analogous to the choice targets in Yang’s

study. Instead of reacting to visual shapes to introduce weights

to the DV, the context triggers a directed search, analogous to

foraging, such that each step introduces weights that increment

and decrement a DV bearing on similitude. As in foraging, mini-

decisions are made about the success or failure of the search

strategy and a decision is made to explore elsewhere or deeper

in the tree.

Viewing the retrieval process as a series of decisions about

similitude invites us to speculate that what is stored, consoli-

dated, and reconsolidated in memory is not a connection but

values like those associated with the shapes in the Yang study:

a context-dependent value—a weight of evidence as opposed

to a synaptic weight—bearing on a decision about relevance.

We recognize that this is embarrassingly vague, but we hope

more serious scholars of learning and memory will perceive

some value in the decision-making perspective.

Strategy and Abstraction

When we make a decision about a proposition but we do not

know how we will communicate or act upon that decision, then

structures like LIP are unlikely sites of integration, and a DV is un-

likely to ‘‘flow’’ to brain structures involved in motor preparation

(Gold and Shadlen, 2003; Selen et al., 2012). Such abstract

decisions are likely to use similar mechanisms of bounded evi-

dence accumulation and so forth (e.g., see O’Connell et al.,

2012), but there is much work to be done on this. In a sense an

abstract decision about motion is a decision about rule or

context. For example, if a monkey learns to make an abstract

decision about direction, it must know that ultimately it will be

asked to provide the answer somehow, for example by indi-

cating with a color, as in red for right, green for left. The idea is

that during deliberation, there is accumulation of evidence

bearing not on an action but on a choice of rule: when the oppor-

tunity arises, choose red or green (Shadlen et al., 2008).

There are already relevant studies in the primate that suggest

rule is represented in the dorsolateral prefrontal cortex (e.g.,

Wallis et al., 2001). A rule must be translated to the activation,

selection, and configuration of another circuit. In the future, it

would be beneficial to elaborate such tasks so that the decision

about which rule requires deliberation. Were it extended in time,

we predict that a DV (about rule) would be represented in struc-

tures that effect the implementation of the rule.

More generally, we see great potential in the idea that the

outcome of a decision may not be an action but the initiation

of another decision process. It invites us to view the kind of stra-

tegizing apparent in animal foraging as a rudimentary basis for

creativity—that is, noncapricious exploration within a context

with overarching goals—and it allows us to appreciate why

larger brains support the complexity of human cognition. With

a bigger brain comes the ability to make decisions about deci-

sions about decisions. Pat Goldman-Rakic (Goldman-Rakic,

1996) made a similar argument, as has John Duncan under
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the theme of a multiple demands system (Duncan, 2013; see

also Botvinick et al., 2009; Badre and D’Esposito, 2009; Miller

et al., 1960). We suspect that this nested architecture will

displace the concept of a global workspace (Baars, 1988; Ser-

gent and Dehaene, 2004), which currently seems necessary to

explain abstract ideation.

Decisions about Relevance

Most decisions we make do not depend on just one stream of

data. The brain must have a way to allow some sources of infor-

mation to access the decision variable and to filter out others.

These might be called decisions about relevance. It is a reason-

able way to construe the process of attention allocation, and we

have already mentioned a potential role in decisions based on

evidence from memory. The outcome of a ‘‘decision about rele-

vance’’ is not an action but a change in the routing of information

in the brain. Norman and Shallice (Norman and Shallice, 1986;

Power and Petersen, 2013) referred to this as controlling (in

contrast with processing). For neurophysiology, we might term

this circuit selection and configuration. We suspect its neural

substrate is a yet-to-be-discovered function of supragranular

cortex, and it is enticing to think that it has a signature in neural

signals that can be dissociated from modulation of spike rate.

Examples include field potentials, the fMRI BOLD signal, and

phenomena observed with voltage-sensitive dyes.

Decisions to Move or Engage: Volition and

Consciousness

We have gradually meandered to the territory of cognitive func-

tions, which at first glance do not resemble decisions. The idea is

that we might approach some of the more mysterious functions

from a vantage point of decision making. The potential dividend

is that the mechanisms identified in the study of decision making

might advance our understanding of some seemingly elusive

phenomena.

Consider the problem of volition: the conscious will to perform

an action. Like movements made without much awareness,

specification and initiation of willful action probably involve the

accumulation of evidence bearing on what to do along with a

termination rule that combines thresholds in time (i.e., a deadline)

and evidence. What about the sensation of ‘‘willing’’? We

conceive of this as another decision process that uses the

same evidence to commit to some kind of internal report—or

an explicit report if that is what we are asked to supply. It should

come as no surprise that this commitment would require less

evidence than the decision to actually act, but it is based on a

DV determining specification and initiation. Thus we should not

be shocked by the observation that brain activity precedes

‘‘willing,’’ which precedes the actual act (Haggard, 2008; Libet

et al., 1983; Roskies, 2010). Of course, if an actor is not engaging

the question about ‘‘willing,’’ the threshold for committing to

such a provisional report might not be reached before an action,

in which case we have action without explicit willing. Finally,

since it is possible to revise a decision with information available

after an initial choice (Resulaj et al., 2009), we can imagine that

the second scenario could support endorsement of ‘‘willing’’

after the fact. Nothing we have speculated seems terribly contro-

versial. Viewed from the perspective of decision making, willing,

initiating, preparing subliminally, and endorsing do not seem

mysterious.
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An even more intriguing idea is that consciousness—that holy

grail of psychology and neuroscience—is explained as a deci-

sion to engage in a certain way. When a neurologist assesses

consciousness, she is concerned with a spectrum of wakeful-

ness spanning coma through stupor though full attentive

engagement. The transition from sleep to wakefulness involves

a kind of decision to engage—to do so for the cry of the baby

but not the sound of the rain or the traffic. These are perceptual

decisions that result in turning on the circuitry that wakes us—

circuitry that involves brainstem, ascending systems, and intra-

laminar nuclei of the thalamus. Of course, this is not the kind of

consciousness that fascinates psychologists and philosophers.

But it may be related. We have already suggested that the

outcome of a decision may be the selection and configuration

(or parameterization) of another circuit. We do not understand

these steps, but we speculate that they involve similar thalamic

circuitry. Indeed, the association thalamic nuclei (e.g., pulvinar)

contain a class of neurons that exhibit projection patterns (and

other features) that resemble the neurons in the intralaminar

nuclei. Ted Jones referred to this as the thalamic matrix (Jones,

2001). These matrix neurons could function to translate the

outcome of one decision to the ‘‘engagement’’ of another circuit.

Such a mechanism is probably a ubiquitous feature of cogni-

tion, and we assume it does not require the kind of conscious

awareness referred to as a holy grail. We do not need conscious

awareness to make a provisional decision to eat, return later,

explore elsewhere, reach for, court, or inspect. But when we

decide to engage in the manner of a provisional report—to

another agent or to oneself—we introduce narrative and a form

of subjectivity. Consider the spatiality of an object that I decide

to provisionally report to another agent. The object is not a pro-

visional affordance—something that has spatiality as an object I

might look at, or grasp in a certain way, or sit upon—but instead

occupies a spatiality shared by me and another agent (about

whom I have a theory of mind). It has a presence independent

of my own gaze perspective. For example, it has a back that I

cannot see but that can be seen (inspected) by another agent,

or by me if I move. This example serves as a partial account of

what is commonly referred to as qualia or the so-called hard

problem. But it is no harder than an affordance—a quality of an

object that would satisfy an action like sitting on or looking at.

It only seems hard if one is wed to the idea that representation

is sufficient for perception, which is obviously false (Churchland

et al., 1994; Rensink, 2000).

Viewed as a decision to engage, the problem of conscious

awareness is not solved but tamed. The neural mechanisms

are not all that mysterious. They involve the elements of decision

making and probably co-opt the mechanisms of arousal from

sleep. This is speculative to be sure, but it is also liberating,

and we hope it will inspire experiments.

Toward a More Refined Understanding
The broad scope of decision making belies a more significant

impact, for we believe that principles revealed through the study

of decision making expose mechanisms that underlie many of

the core functions of cognition. This is because the neural mech-

anisms that support integration, bound setting, initiation, and

termination, and so forth are mechanisms that keep the normal
brain ‘‘not confused.’’ We suspect that a breakdown of these

mechanisms not only leads to confusion but also to diverse

manifestation of cognitive dysfunction, depending on the nature

of the failure and the particular brain system that is compro-

mised. It seems conceivable that in the next 25 years, we will

know enough about these mechanisms to begin to devise ther-

apies to correct or ameliorate such dysfunction and possibly

even reverse it. These therapies will target circuits in ways we

cannot imagine right now, because we lack the refined under-

standing of neural mechanism at the appropriate level.

The findings reviewed in this essay afford insight into mecha-

nisms at a systems and computational level. We might begin our

steps toward refinement by listing three open questions about

the decision process described in the beginning of this essay.

(1) LIP neurons represent the integral of evidence but we do

not know how the integration occurs or whether LIP plays an

essential role. (2) The coalescence of firing rate before Tin
choices suggests that the mechanism for termination is a

threshold or bound crossing, but we do not know where in the

brain the comparison is made, how it is made, or how the bound

is set. We think the bound is downstream of LIP, and when it is,

integration stops, but we do not know how a threshold detection

leads to a change in the state of the LIP circuit. We also do not

know what starts the integration. There’s a reproducible starting

time�200 ms after the onset of motion, but we do not know why

this is so long and what is taking place in the 100+ ms between

the onset of relevant directional signals in visual cortex and their

representation in LIP. (3) We do not know how values are added

to the integral of the evidence. We’re fairly certain that time-

dependent quantities, such as the urgency signal mentioned

earlier or a dynamic bias signal (Hanks et al., 2011), are added,

but we do not knowwhether they are represented independently

of the DV and how they are incorporated into the DV.

The answers to these questions will require the study of neural

processing in other cortical and subcortical structures, including

the thalamus, basal ganglia, and possibly the cerebellum. It

makes little sense to say the decision takes place in area LIP,

or any other area for that matter. Even for the part of the decision

processwith which LIP aligns—representation of a DV—it seems

unlikely that the pieces of the computation arise de novo in LIP.

Still, it will be important to determine which aspects of the cir-

cuitry play critical roles.

Perhaps the most important problem to solve is the mecha-

nism of integration. It is commonly assumed that this capacity

is an extension of a simpler capacity of neurons to achieve a

steady persistent activity for tenths of seconds to seconds

(Wang, 2002), but this remains an open question. There are

several elegant computational theories that would explain inte-

gration by balancing recurrent excitation with leaks and inhibition

(Albantakis and Deco, 2009; Bogacz et al., 2006; Machens et al.,

2005; Miller and Katz, 2013; Usher and McClelland, 2001; Wong

and Wang, 2006) along with a variety of extensions that over-

come sensitivity to mistuning (Cain et al., 2013; Goldman et al.,

2003; Koulakov et al., 2002). These theories would support inte-

gration within the cortical module (e.g., LIP). In contrast, our

favorite idea for integration would involve control signals that

effectively switch the LIP circuit between modes that either

defend the current firing rate (i.e., stable persistent activity) or
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allow the rate to be perturbed by external input such as evidence

from the visual cortex. A similar idea has been put forth by Schall

and colleagues (Purcell et al., 2010). This is part of the larger idea

mentioned in the section on decisions about relevance. The

result of this decision is a change in configuration of the LIP cir-

cuit such that the new piece of evidence can perturb the DV.

To begin to address the circuit-level analyses of integration we

need better techniques that can be used in primates andweneed

better testing paradigms in rodents. There is great promise in

both of these areas and emerging enthusiasm for interaction

between these traditionally separate cultures.Weneed to control

elements of the microcircuit in primates with optogenetics and

DREADD (designer receptors exclusively activated by designer

drugs, Rogan and Roth, 2011) technologies, and we need to

identify relevant physiological properties of cortical circuits in

more tractable animals (e.g., the mouse) that can be studied in

detail. Ideally, the variety, reliability, and safety of viral expression

systems will support such work in highly trained monkeys (e.g.,

Diester et al., 2011; Han et al., 2009; Jazayeri et al., 2012), and

the behavioral paradigms in mice will achieve the sensitivity to

serve as assays for subtle manipulations of the circuit. Recall

that the most compelling microstimulation studies in the field of

perceptual decision making (e.g., Salzman et al., 1990) would

have failed had the task included only easy conditions! Promising

work fromseveral labs supports the possibility of achieving this in

rats (e.g., Brunton et al., 2013; Lima et al., 2009; Raposo et al.,

2012; Rinberg et al., 2006; Znamenskiy and Zador, 2013), and

mice cannot be far behind (Carandini and Churchland, 2013).

Indeed, it now appears possible to study persistent activity in

behaving mice (Harvey et al., 2012). These are early days, but

we are hopeful that the molecular tools available in the mouse

will yield answers to fundamental questions about integration

and eventually to some of the other ‘‘principles’’ listed in Box 3.

Many of the most important questions concern interactions

between circuits. What processes are responsible for gating,

routing, selecting, and configuring association areas like LIP?

Here we need technologies that will make it routine to record

from and manipulate neurons identified by their connection to

other brain structures—that is, without heroic effort (e.g., Som-

mer and Wurtz, 2006). Were it possible to record from neurons

in both the striatum and cortex that receive input from the

same dorsal pulvinar neuron, we might begin to understand

how the same LIP neuron can be influenced by different sources

of evidence in different contexts. We suspect that this con-

figuration must be realized in the �100 ms epoch in which

motion information is available in the visual cortex but not yet

apparent in LIP.

Closing Remarks
We have covered much ground in this essay, but we have only

touched on a fraction of what the topic of decisionmakingmeans

to psychologists, economists, political scientists, jurists, philos-

ophers, and artists. And despite our attempt to connect percep-

tual decision making to other types of decisions, even many

neuroscientists will be right to criticize the authors for parochi-

alism and gross omissions. Perhaps thinking about the next

quarter-century ought to begin with an acknowledgment that

the neuroscience of decision making will influence many disci-
802 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
plines. This is an exciting theme to contemplate as an educator

wishing to advance interdisciplinary knowledge, but it may

be wise to avoid two potential missteps. The first is to believe

that neuroscience offers more fundamental explanations of

phenomena traditionally studied by other fields. Our limited

interactions with philosophers and ethicists has taught us that

one of the hardest questions to answer is why (and how) a neuro-

scientific explanation would affect a concept. The second is to

assert that a neuroscientific explanation renders a phenomenon

quaint or unreal. A neuroscientific explanation of musical aes-

thetics does not make music less beautiful. Explaining is not

explaining away.

This is the 25th anniversary of Neuron, which invites us to think

of the neuron as the cornerstone of brain function. We see no

reason to exclude cognitive functions, like decision making,

from the party. Indeed �25 years ago, when the study of vision

began its migration from extrastriate visual cortex to the parietal

association cortex, some of us received very clear advice that

the days of connecting the firing rates of single neurons with vari-

ables of interest were behind us.Wewerewarned that the impor-

tant computations will only be revealed in complex patterns of

activity across vast populations of neurons. We were skeptical

of this advice, because we had ideas about why neurons were

noisy (so found the patterns less compelling), and believed the

noise arose from a generic problem that had to be solved by

any cortical module that operates in what we termed a ‘‘high-

input’’ regime (Shadlen and Newsome, 1998) (Box 1), and the

association cortex should be no exception. It seemed likely

that when amodule computes a quantity—even one as high level

as degree of belief in a proposition—the variables that are repre-

sented and combined would be reflected directly in the firing

rates of single neurons.

Horace Barlow referred to this property as a direct (as

opposed to distributed) code (Barlow, 1995). It is a far more pro-

found concept than a grandmother cell, for it is not about repre-

sentation (at least not solely) but concerns the intermediate steps

of neural computation. In vision, it is a legacy of Hubel and Wie-

sel, expanded and elaborated by J.A. Movshon (e.g., Movshon

et al., 1978a, 1978b) and many others. The concept seems to

be holding up to the study of decision making. No high-dimen-

sional dynamical structures needed for assembly—at least not

so far. In the next 25 years, the field will tackle problems that

encompass various levels of explanation, from molecule to

networks of circuits. But in the end, the key mechanisms that

underlie cognition are likely to be understood as computations

supported by the firing rates of neurons that relate directly to

relevant quantities of information, evidence, plans, and the steps

along the way.

Regarding decision making, we have arrived at a point where

the three pillars of choice behavior—accuracy, reaction time,

and confidence (Link, 1992; Vickers, 1979)—are reconciled by

a common neural mechanism. It has taken 25 years to achieve

this, and it will take another 25, at least, to achieve the degree

of understanding we desire at the level of cells, circuits, and

circuit-circuit interaction. It will be worth the effort. If cognition

is decision making writ large, then the window on cognition

mentioned in the title of this essay may one day be a portal to

interventions in diseases that affect the mind.



Neuron

Perspective
ACKNOWLEDGMENTS

M.N.S. is supported by HHMI, NEI, and HFSP. We thank Helen Brew, Chris
Fetsch, Naomi Odean, Daphna Shohamy, Luke Woloszyn, and Shushruth for
helpful feedback.

REFERENCES

Albantakis, L., and Deco, G. (2009). The encoding of alternatives in multiple-
choice decision making. Proc. Natl. Acad. Sci. USA 106, 10308–10313.

Andersen, R.A., Asanuma, C., Essick, G., and Siegel, R.M. (1990). Corticocort-
ical connections of anatomically and physiologically defined subdivisions
within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113.

Baars, B.J. (1988). A Cognitive Theory of Consciousness (Cambridge Univer-
sity Press).

Badre, D., and D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal
lobe hierarchical? Nat. Rev. Neurosci. 10, 659–669.

Barash, S., Bracewell, R.M., Fogassi, L., Gnadt, J.W., and Andersen, R.A.
(1991). Saccade-related activity in the lateral intraparietal area. I. Temporal
properties; comparison with area 7a. J. Neurophysiol. 66, 1095–1108.

Barlow, H.B. (1995). The neuron doctrine in perception. In The Cognitive Neu-
rosciences, M. Gazzaniga, ed. (Cambridge, Mass: MIT Press), pp. 415–435.

Barlow, H.B., Levick, W.R., and Yoon, M. (1971). Responses to single quanta
of light in retinal ganglion cells of the cat. Vision Res. (Suppl 3 ), 87–101.

Barraclough, D.J., Conroy, M.L., and Lee, D. (2004). Prefrontal cortex and de-
cision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410.

Beck, J.M., Ma, W.J., Kiani, R., Hanks, T., Churchland, A.K., Roitman, J.,
Shadlen, M.N., Latham, P.E., and Pouget, A. (2008). Probabilistic population
codes for Bayesian decision making. Neuron 60, 1142–1152.

Beitel, R.E., Schreiner, C.E., Cheung, S.W., Wang, X., and Merzenich, M.M.
(2003). Reward-dependent plasticity in the primary auditory cortex of adult
monkeys trained to discriminate temporally modulated signals. Proc. Natl.
Acad. Sci. USA 100, 11070–11075.

Bogacz, R., and Gurney, K. (2007). The basal ganglia and cortex implement
optimal decision making between alternative actions. Neural Comput. 19,
442–477.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J.D. (2006). The
physics of optimal decision making: a formal analysis of models of perfor-
mance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765.

Bollimunta, A., Totten, D., and Ditterich, J. (2012). Neural dynamics of choice:
single-trial analysis of decision-related activity in parietal cortex. J. Neurosci.
32, 12684–12701.

Botvinick, M.M., Niv, Y., and Barto, A.C. (2009). Hierarchically organized
behavior and its neural foundations: a reinforcement learning perspective.
Cognition 113, 262–280.

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. (1992). The
analysis of visual motion: a comparison of neuronal and psychophysical per-
formance. J. Neurosci. 12, 4745–4765.

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. (1993).
Responses of neurons in macaque MT to stochastic motion signals. Vis.
Neurosci. 10, 1157–1169.

Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S., andMovshon, J.A.
(1996). A relationship between behavioral choice and the visual responses of
neurons in macaque MT. Vis. Neurosci. 13, 87–100.

Brunton, B.W., Botvinick, M.M., and Brody, C.D. (2013). Rats and humans can
optimally accumulate evidence for decision-making. Science 340, 95–98.

Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant
receptors: a molecular basis for odor recognition. Cell 65, 175–187.

Bunsey, M., and Eichenbaum, H. (1996). Conservation of hippocampal mem-
ory function in rats and humans. Nature 379, 255–257.
Busemeyer, J.R., and Rapoport, A. (1988). Psychological models of deferred
decision making. J. Math. Psychol. 32, 91–134.

Cain, N., Barreiro, A.K., Shadlen, M., and Shea-Brown, E. (2013). Neural inte-
grators for decision making: a favorable tradeoff between robustness and
sensitivity. J. Neurophysiol. 109, 2542–2559.

Carandini, M., and Churchland, A.K. (2013). Probing perceptual decisions in
rodents. Nat. Neurosci. 16, 824–831.

Celebrini, S., and Newsome, W.T. (1994). Neuronal and psychophysical sensi-
tivity to motion signals in extrastriate area MST of the macaque monkey.
J. Neurosci. 14, 4109–4124.

Chandrashekar, J., Hoon, M.A., Ryba, N.J., and Zuker, C.S. (2006). The recep-
tors and cells for mammalian taste. Nature 444, 288–294.

Chen, X., Gabitto, M., Peng, Y., Ryba, N.J., and Zuker, C.S. (2011). A gusto-
topic map of taste qualities in the mammalian brain. Science 333, 1262–1266.

Churchland, P.S., Ramachandran, V.S., and Sejnowski, T.J. (1994). A critique
of pure vision. In Large-scale neuronal theories of the brain, C. Koch and J.L.
Davis, eds. (Cambridge, Mass: MIT Press), pp. 23–60.

Churchland, A.K., Kiani, R., and Shadlen, M.N. (2008). Decision-making with
multiple alternatives. Nat. Neurosci. 11, 693–702.

Churchland, A.K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and Shad-
len, M.N. (2011). Variance as a signature of neural computations during deci-
sion making. Neuron 69, 818–831.

Cisek, P. (2007). Cortical mechanisms of action selection: the affordance
competition hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1585–
1599.

Cisek, P., Puskas, G.A., and El-Murr, S. (2009). Decisions in changing condi-
tions: the urgency-gating model. J. Neurosci. 29, 11560–11571.

Cook, E.P., and Maunsell, J.H. (2002). Dynamics of neuronal responses in
macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994.

Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., and Dolan, R.J. (2006).
Cortical substrates for exploratory decisions in humans. Nature 441, 876–879.

Deaner, R.O., Khera, A.V., and Platt, M.L. (2005). Monkeys pay per view: adap-
tive valuation of social images by rhesus macaques. Curr. Biol. 15, 543–548.

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., and Sergent, C.
(2006). Conscious, preconscious, and subliminal processing: a testable taxon-
omy. Trends Cogn. Sci. 10, 204–211.

Del Cul, A., Dehaene, S., Reyes, P., Bravo, E., and Slachevsky, A. (2009).
Causal role of prefrontal cortex in the threshold for access to consciousness.
Brain 132, 2531–2540.

DeWeese, M.R., and Meister, M. (1999). How to measure the information
gained from one symbol. Network 10, 325–340.

Diamond,M.E., vonHeimendahl,M., and Arabzadeh, E. (2008).Whisker-medi-
ated texture discrimination. PLoS Biol. 6, e220.

Diester, I., Kaufman, M.T., Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramak-
rishnan, C., Deisseroth, K., and Shenoy, K.V. (2011). An optogenetic toolbox
designed for primates. Nat. Neurosci. 14, 387–397.

Ding, L., and Gold, J.I. (2010). Caudate encodes multiple computations for
perceptual decisions. J. Neurosci. 30, 15747–15759.

Ding, L., and Gold, J.I. (2012). Separate, causal roles of the caudate in
saccadic choice and execution in a perceptual decision task. Neuron 75,
865–874.

Ditterich, J. (2010). A comparison between mechanisms of multi-alternative
perceptual decision making: ability to explain human behavior, predictions
for neurophysiology, and relationship with decision theory. Front. Neurosci.
4, 184.

Donaldson, D.I., Wheeler, M.E., and Petersen, S.E. (2010). Remember the
source: dissociating frontal and parietal contributions to episodic memory.
J. Cogn. Neurosci. 22, 377–391.
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 803



Neuron

Perspective
Donner, T.H., Siegel, M., Fries, P., and Engel, A.K. (2009). Buildup of choice-
predictive activity in human motor cortex during perceptual decision making.
Curr. Biol. 19, 1581–1585.

Drugowitsch, J., Moreno-Bote, R., Churchland, A.K., Shadlen, M.N., and
Pouget, A. (2012). The cost of accumulating evidence in perceptual decision
making. J. Neurosci. 32, 3612–3628.

Duncan, J. (2013). The structure of cognition: attentional episodes in mind and
brain. Neuron 80, 35–50.

Funahashi, S., Bruce, C.J., and Goldman-Rakic, P.S. (1991). Neuronal activity
related to saccadic eye movements in the monkey’s dorsolateral prefrontal
cortex. J. Neurophysiol. 65, 1464–1483.

Furman, M., and Wang, X.J. (2008). Similarity effect and optimal control of
multiple-choice decision making. Neuron 60, 1153–1168.

Fuster, J.M. (1973). Unit activity in prefrontal cortex during delayed-response
performance: neuronal correlates of transient memory. J. Neurophysiol. 36,
61–78.

Fuster, J.M., and Alexander, G.E. (1971). Neuron activity related to short-term
memory. Science 173, 652–654.

Gallistel, C.R., and Gibbon, J. (2000). Time, rate, and conditioning. Psychol.
Rev. 107, 289–344.

Gibbon, J., Malapani, C., Dale, C.L., andGallistel, C.R. (1997). Toward a neuro-
biology of temporal cognition: advances and challenges. Curr. Opin. Neuro-
biol. 7, 170–184.

Giguère, G., and Love, B.C. (2013). Limits in decision making arise from limits
in memory retrieval. Proc. Natl. Acad. Sci. USA 110, 7613–7618.

Glimcher, P.W. (2001). Making choices: the neurophysiology of visual-
saccadic decision making. Trends Neurosci. 24, 654–659.

Glimcher, P.W. (2005). Indeterminacy in brain and behavior. Annu. Rev.
Psychol. 56, 25–56.

Gnadt, J.W., and Andersen, R.A. (1988). Memory related motor planning activ-
ity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220.

Gold, J.I., and Shadlen, M.N. (2000). Representation of a perceptual decision
in developing oculomotor commands. Nature 404, 390–394.

Gold, J.I., and Shadlen, M.N. (2001). Neural computations that underlie deci-
sions about sensory stimuli. Trends Cogn. Sci. 5, 10–16.

Gold, J.I., and Shadlen, M.N. (2002). Banburismus and the brain: decoding the
relationship between sensory stimuli, decisions, and reward. Neuron 36,
299–308.

Gold, J.I., and Shadlen, M.N. (2003). The influence of behavioral context on the
representation of a perceptual decision in developing oculomotor commands.
J. Neurosci. 23, 632–651.

Gold, J.I., and Shadlen, M.N. (2007). The neural basis of decision making.
Annu. Rev. Neurosci. 30, 535–574.

Goldman, M.S., Levine, J.H., Major, G., Tank, D.W., and Seung, H.S. (2003).
Robust persistent neural activity in a model integrator with multiple hysteretic
dendrites per neuron. Cereb. Cortex 13, 1185–1195.

Goldman-Rakic, P.S. (1996). The prefrontal landscape: implications of func-
tional architecture for understanding human mentation and the central execu-
tive. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1445–1453.

Good, I.J. (1979). Studies in the history of probability and statistics. XXXVII
A.M. Turing’s statistical work in World War II. Biometrika 66, 393–396.

Graham, N.V.S. (1989). Visual Pattern Analyzers (Oxford: Oxford University
Press).

Green, D.M., and Swets, J.A. (1966). Signal Detection Theory and Psycho-
physics (New York: John Wiley and Sons, Inc.).

Haggard, P. (2008). Human volition: towards a neuroscience of will. Nat. Rev.
Neurosci. 9, 934–946.
804 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
Hampton, R.R. (2001). Rhesus monkeys know when they remember. Proc.
Natl. Acad. Sci. USA 98, 5359–5362.

Han, X., Qian, X., Bernstein, J.G., Zhou, H.-H., Franzesi, G.T., Stern, P., Bron-
son, R.T., Graybiel, A.M., Desimone, R., and Boyden, E.S. (2009). Millisecond-
timescale optical control of neural dynamics in the nonhuman primate brain.
Neuron 62, 191–198.

Hanes, D.P., and Schall, J.D. (1996). Neural control of voluntary movement
initiation. Science 274, 427–430.

Hanks, T.D., Mazurek, M.E., Kiani, R., Hopp, E., and Shadlen, M.N. (2011).
Elapsed decision time affects the weighting of prior probability in a perceptual
decision task. J. Neurosci. 31, 6339–6352.

Harvey, C.D., Coen, P., and Tank, D.W. (2012). Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature 484, 62–68.

Heekeren, H.R., Marrett, S., Bandettini, P.A., and Ungerleider, L.G. (2004). A
general mechanism for perceptual decision-making in the human brain. Nature
431, 859–862.

Heekeren, H.R., Marrett, S., Ruff, D.A., Bandettini, P.A., and Ungerleider, L.G.
(2006). Involvement of human left dorsolateral prefrontal cortex in perceptual
decision making is independent of response modality. Proc. Natl. Acad. Sci.
USA 103, 10023–10028.

Heitz, R.P., and Schall, J.D. (2012). Neural mechanisms of speed-accuracy
tradeoff. Neuron 76, 616–628.

Hernandez, A., Zainos, A., and Romo, R. (2002). Temporal evolution of a
decision-making process in medial premotor cortex. Neuron 33, 959–972.

Huk, A.C., and Shadlen,M.N. (2005). Neural activity inmacaque parietal cortex
reflects temporal integration of visual motion signals during perceptual deci-
sion making. J. Neurosci. 25, 10420–10436.

Janssen, P., and Shadlen, M.N. (2005). A representation of the hazard rate of
elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241.

Jazayeri, M., and Movshon, J.A. (2006). Optimal representation of sensory in-
formation by neural populations. Nat. Neurosci. 9, 690–696.

Jazayeri, M., Lindbloom-Brown, Z., and Horwitz, G.D. (2012). Saccadic eye
movements evoked by optogenetic activation of primate V1. Nat. Neurosci.
15, 1368–1370.

Johnson, K.O. (1980a). Sensory discrimination: decision process.
J. Neurophysiol. 43, 1771–1792.

Johnson, K.O. (1980b). Sensory discrimination: neural processes preceding
discrimination decision. J. Neurophysiol. 43, 1793–1815.

Jones, E.G. (2001). The thalamic matrix and thalamocortical synchrony.
Trends Neurosci. 24, 595–601.

Karlsson, M.P., Tervo, D.G.R., and Karpova, A.Y. (2012). Network resets in
medial prefrontal cortex mark the onset of behavioral uncertainty. Science
338, 135–139.

Kayser, A.S., Buchsbaum, B.R., Erickson, D.T., and D’Esposito, M. (2010).
The functional anatomy of a perceptual decision in the human brain.
J. Neurophysiol. 103, 1179–1194.

Kepecs, A., Uchida, N., Zariwala, H.A., and Mainen, Z.F. (2008). Neural corre-
lates, computation and behavioural impact of decision confidence. Nature
455, 227–231.

Kiani, R., and Shadlen, M.N. (2009). Representation of confidence associated
with a decision by neurons in the parietal cortex. Science 324, 759–764.

Kiani, R., Hanks, T.D., and Shadlen, M.N. (2008). Bounded integration in pari-
etal cortex underlies decisions even when viewing duration is dictated by the
environment. J. Neurosci. 28, 3017–3029.

Knowlton, B.J., Squire, L.R., and Gluck, M.A. (1994). Probabilistic classifica-
tion learning in amnesia. Learn. Mem. 1, 106–120.

Knowlton, B.J., Mangels, J.A., and Squire, L.R. (1996). A neostriatal habit
learning system in humans. Science 273, 1399–1402.



Neuron

Perspective
Kornell, N., Son, L.K., and Terrace, H.S. (2007). Transfer of metacognitive skills
and hint seeking in monkeys. Psychol. Sci. 18, 64–71.

Koulakov, A.A., Raghavachari, S., Kepecs, A., and Lisman, J.E. (2002). Model
for a robust neural integrator. Nat. Neurosci. 5, 775–782.

Krajbich, I., Lu, D., Camerer, C., and Rangel, A. (2012). The attentional drift-
diffusionmodel extends to simple purchasingdecisions. Front. Psychol. 3, 193.

Laming, D.R.J. (1968). Information Theory of Choice-Reaction Times (London:
Academic Press).

Lau, B., and Glimcher, P.W. (2005). Dynamic response-by-responsemodels of
matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579.

Leon, M.I., and Shadlen, M.N. (2003). Representation of time by neurons in the
posterior parietal cortex of the macaque. Neuron 38, 317–327.

Libet, B., Gleason, C.A., Wright, E.W., and Pearl, D.K. (1983). Time of
conscious intention to act in relation to onset of cerebral activity (readiness-
potential). The unconscious initiation of a freely voluntary act. Brain 106,
623–642.

Lima, S.Q., Hromádka, T., Znamenskiy, P., and Zador, A.M. (2009). PINP: a
new method of tagging neuronal populations for identification during in vivo
electrophysiological recording. PLoS ONE 4, e6099.

Link, S.W. (1992). The Wave Theory of Difference and Similarity (Hillsdale, NJ:
Lawrence Erlbaum Associates).

Link, S.W., and Heath, R.A. (1975). A sequential theory of psychological
discrimination. Psychometrika 40, 77–105.

Lo, C.C., and Wang, X.J. (2006). Cortico-basal ganglia circuit mechanism for a
decision threshold in reaction time tasks. Nat. Neurosci. 9, 956–963.

Machens, C.K., Romo, R., and Brody, C.D. (2005). Flexible control of mutual
inhibition: a neural model of two-interval discrimination. Science 307, 1121–
1124.

Malapani, C., Rakitin, B., Levy, R., Meck, W.H., Deweer, B., Dubois, B., and
Gibbon, J. (1998). Coupled temporal memories in Parkinson’s disease: a
dopamine-related dysfunction. J. Cogn. Neurosci. 10, 316–331.

Maunsell, J.H.R., and Newsome,W.T. (1987). Visual processing in monkey ex-
trastriate cortex. Annu. Rev. Neurosci. 10, 363–401.

Mazurek, M.E., Roitman, J.D., Ditterich, J., and Shadlen, M.N. (2003). A role for
neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–
1269.

Middlebrooks, P.G., and Sommer, M.A. (2012). Neuronal correlates of meta-
cognition in primate frontal cortex. Neuron 75, 517–530.

Miller, P., and Katz, D.B. (2010). Stochastic transitions between neural states in
taste processing and decision-making. J. Neurosci. 30, 2559–2570.

Miller, P., and Katz, D.B. (2013). Accuracy and response-time distributions for
decision-making: linear perfect integrators versus nonlinear attractor-based
neural circuits. J. Comput. Neurosci. Published online April 23, 2013. http://
dx.doi.org/10.1007/s10827-013-0452-x.

Miller, G.A., Galanter, E., and Pribram, K.H. (1960). Plans and the Structure of
Behavior (New York: Holt Rinehart and Winston).

Mountcastle, V.B., Talbot, W.H., Sakata, H., and Hyvärinen, J. (1969). Cortical
neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys.
Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32,
452–484.

Movshon, J.A., Thompson, I.D., and Tolhurst, D.J. (1978a). Spatial summation
in the receptive fields of simple cells in the cat’s striate cortex. J. Physiol. 283,
53–77.

Movshon, J.A., Thompson, I.D., and Tolhurst, D.J. (1978b). Receptive field
organization of complex cells in the cat’s striate cortex. J. Physiol. 283, 79–99.

Newsome, W.T., Britten, K.H., andMovshon, J.A. (1989a). Neuronal correlates
of a perceptual decision. Nature 341, 52–54.

Newsome, W.T., Britten, K.H., Movshon, J.A., and Shadlen, M. (1989b). Single
neurons and the perception of visual motion. In Neural mechanisms of visual
perception. Proceedings of the retina research foundation, D.M.-K. Lam and
C.D. Gilbert, eds. (The Woodlands: TX: Portfolio Publishing Company),
pp. 171–198.

Nienborg, H., and Cumming, B.G. (2009). Decision-related activity in sensory
neurons reflects more than a neuron’s causal effect. Nature 459, 89–92.

Norman, D., and Shallice, T. (1986). Attention to Action: Willed and Automatic
Control of Behavior (New York: Plenum Press).

O’Connell, R.G., Dockree, P.M., and Kelly, S.P. (2012). A supramodal accumu-
lation-to-bound signal that determines perceptual decisions in humans. Nat.
Neurosci. 15, 1729–1735.

Padoa-Schioppa, C. (2011). Neurobiology of economic choice: a good-based
model. Annu. Rev. Neurosci. 34, 333–359.

Parker, A.J., and Newsome,W.T. (1998). Sense and the single neuron: probing
the physiology of perception. Annu. Rev. Neurosci. 21, 227–277.

Pesaran, B., Nelson, M.J., and Andersen, R.A. (2008). Free choice activates a
decision circuit between frontal and parietal cortex. Nature 453, 406–409.

Pfeiffer, B.E., and Foster, D.J. (2013). Hippocampal place-cell sequences
depict future paths to remembered goals. Nature 497, 74–79.

Philiastides, M.G., and Sajda, P. (2007). EEG-informed fMRI reveals spatio-
temporal characteristics of perceptual decision making. J. Neurosci. 27,
13082–13091.

Platt, M.L., and Glimcher, P.W. (1999). Neural correlates of decision variables
in parietal cortex. Nature 400, 233–238.

Poremba, A., Saunders, R.C., Crane, A.M., Cook, M., Sokoloff, L., and Mis-
hkin, M. (2003). Functional mapping of the primate auditory system. Science
299, 568–572.

Power, J.D., and Petersen, S.E. (2013). Control-related systems in the human
brain. Curr. Opin. Neurobiol. 23, 223–228.

Purcell, B.A., Heitz, R.P., Cohen, J.Y., Schall, J.D., Logan, G.D., and Palmeri,
T.J. (2010). Neurally constrained modeling of perceptual decision making.
Psychol. Rev. 117, 1113–1143.

Rapoport, A., and Burkheimer, G.J. (1971). Models for deferred decision
making. J. Math. Psychol. 8, 508–538.

Raposo, D., Sheppard, J.P., Schrater, P.R., and Churchland, A.K. (2012).
Multisensory decision-making in rats and humans. J. Neurosci. 32, 3726–
3735.

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108.

Ratcliff, R., and McKoon, G. (1982). Speed and accuracy in the processing of
false statements about semantic information. J. Exp. Psychol. Learn. Mem.
Cogn. 8, 16.

Ratcliff, R., and Rouder, J.N. (1998). Modeling response times for two-choice
decisions. Psychol. Sci. 9, 347–356.

Recanzone, G.H. (2000). Response profiles of auditory cortical neurons to
tones and noise in behaving macaque monkeys. Hear. Res. 150, 104–118.

Rensink, R.A. (2000). Seeing, sensing, and scrutinizing. Vision Res. 40, 1469–
1487.

Ressler, K.J., Sullivan, S.L., and Buck, L.B. (1994). Information coding in the
olfactory system: evidence for a stereotyped and highly organized epitope
map in the olfactory bulb. Cell 79, 1245–1255.

Resulaj, A., Kiani, R., Wolpert, D.M., and Shadlen, M.N. (2009). Changes of
mind in decision-making. Nature 461, 263–266.

Rinberg, D., Koulakov, A., and Gelperin, A. (2006). Speed-accuracy tradeoff in
olfaction. Neuron 51, 351–358.

Rogan, S.C., and Roth, B.L. (2011). Remote control of neuronal signaling.
Pharmacol. Rev. 63, 291–315.

Roitman, J.D., and Shadlen, M.N. (2002). Response of neurons in the lateral
intraparietal area during a combined visual discrimination reaction time task.
J. Neurosci. 22, 9475–9489.
Neuron 80, October 30, 2013 ª2013 Elsevier Inc. 805

http://dx.doi.org/10.1007/s10827-013-0452-x
http://dx.doi.org/10.1007/s10827-013-0452-x


Neuron

Perspective
Romo, R., and Salinas, E. (2003). Flutter discrimination: neural codes, percep-
tion, memory and decision making. Nat. Rev. Neurosci. 4, 203–218.

Romo, R., Hernández, A., and Zainos, A. (2004). Neuronal correlates of a
perceptual decision in ventral premotor cortex. Neuron 41, 165–173.

Rorie, A.E., and Newsome, W.T. (2005). A general mechanism for decision-
making in the human brain? Trends Cogn. Sci. 9, 41–43.

Rorie, A.E., Gao, J., McClelland, J.L., and Newsome, W.T. (2010). Integration
of sensory and reward information during perceptual decision-making in
lateral intraparietal cortex (LIP) of the macaque monkey. PLoS ONE 5, e9308.

Roskies, A.L. (2010). Howdoes neuroscience affect our conception of volition?
Annu. Rev. Neurosci. 33, 109–130.

Rubin, B.D., and Katz, L.C. (1999). Optical imaging of odorant representations
in the mammalian olfactory bulb. Neuron 23, 499–511.

Salzman, C.D., Britten, K.H., and Newsome, W.T. (1990). Cortical microstimu-
lation influences perceptual judgements of motion direction. Nature 346,
174–177.

Scherberger, H., and Andersen, R.A. (2007). Target selection signals for arm
reaching in the posterior parietal cortex. J. Neurosci. 27, 2001–2012.

Schwarze, U., Bingel, U., Badre, D., and Sommer, T. (2013). Ventral striatal
activity correlates with memory confidence for old- and new-responses in a
difficult recognition test. PLoS ONE 8, e54324.

Scimeca, J.M., and Badre, D. (2012). Striatal contributions to declarative
memory retrieval. Neuron 75, 380–392.

Selen, L.P., Shadlen, M.N., andWolpert, D.M. (2012). Deliberation in the motor
system: reflex gains track evolving evidence leading to a decision. J. Neurosci.
32, 2276–2286.

Sergent, C., and Dehaene, S. (2004). Neural processes underlying conscious
perception: experimental findings and a global neuronal workspace frame-
work. J. Physiol. Paris 98, 374–384.

Shadlen, M.N., and Kiani, R. (2011). Consciousness as a decision to engage. In
Characterizing Consciousness: From Cognition to the Clinic? Research and
Perspectives in Neurosciences, S. Dehaene and Y. Christen, eds. (Berlin, Hei-
delberg: Springer-Verlag), pp. 27–46.

Shadlen, M.N., and Newsome, W.T. (1994). Noise, neural codes and cortical
organization. Curr. Opin. Neurobiol. 4, 569–579.

Shadlen, M.N., and Newsome, W.T. (1996). Motion perception: seeing and
deciding. Proc. Natl. Acad. Sci. USA 93, 628–633.

Shadlen, M.N., and Newsome, W.T. (1998). The variable discharge of cortical
neurons: implications for connectivity, computation, and information coding.
J. Neurosci. 18, 3870–3896.

Shadlen, M.N., Britten, K.H., Newsome, W.T., and Movshon, J.A. (1996). A
computational analysis of the relationship between neuronal and behavioral
responses to visual motion. J. Neurosci. 16, 1486–1510.

Shadlen, M.N., Hanks, T.D., Churchland, A.K., Kiani, R., and Yang, T. (2006).
The speed and accuracy of a simple perceptual decision: a mathematical
primer. In Bayesian Brain: Probabilistic Approaches to Neural Coding, K.
Doya, S. Ishii, R. Rao, and A. Pouget, eds. (Cambridge: MIT Press),
pp. 209–237.

Shadlen, M.N., Kiani, R., Hanks, T.D., and Churchland, A.K. (2008). Neurobi-
ology of Decision Making: An Intentional Framework. In Better Than
Conscious?: Decision Making, the Human Mind, and Implications for Institu-
tions, C. Engel and W. Singer, eds. (Cambridge: MIT Press), pp. 71–102.

Shields,W.E., Smith, J.D., andWashburn, D.A. (1997). Uncertain responses by
humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-
different task. J. Exp. Psychol. Gen. 126, 147–164.

Simen, P., Balci, F., de Souza, L., Cohen, J.D., and Holmes, P. (2011). A model
of interval timing by neural integration. J. Neurosci. 31, 9238–9253.

Smith, P.L. (1994). Fechner’s legacy and challenge. J. Math. Psychol. 38,
407–420.
806 Neuron 80, October 30, 2013 ª2013 Elsevier Inc.
Sommer, M.A., and Wurtz, R.H. (2006). Influence of the thalamus on spatial
visual processing in frontal cortex. Nature 444, 374–377.

Song, J.H., and Nakayama, K. (2008). Target selection in visual search as re-
vealed by movement trajectories. Vision Res. 48, 853–861.

Song, J.H., and Nakayama, K. (2009). Hidden cognitive states revealed in
choice reaching tasks. Trends Cogn. Sci. 13, 360–366.

Spivey, M.J., Grosjean, M., and Knoblich, G. (2005). Continuous attraction
toward phonological competitors. Proc. Natl. Acad. Sci. USA 102, 10393–
10398.

Stone, M. (1960). Models for choice-reaction time. Psychometrika 25,
251–260.

Sugrue, L.P., Corrado, G.S., and Newsome, W.T. (2005). Choosing the greater
of two goods: neural currencies for valuation and decision making. Nat. Rev.
Neurosci. 6, 363–375.

Tolhurst, D.J., Movshon, J.A., and Dean, A.F. (1983). The statistical reliability of
signals in single neurons in cat and monkey visual cortex. Vision Res. 23,
775–785.

Tosoni, A., Galati, G., Romani, G.L., and Corbetta, M. (2008). Sensory-motor
mechanisms in human parietal cortex underlie arbitrary visual decisions.
Nat. Neurosci. 11, 1446–1453.

Uchida, N., Kepecs, A., andMainen, Z.F. (2006). Seeing at a glance, smelling in
a whiff: rapid forms of perceptual decision making. Nat. Rev. Neurosci. 7,
485–491.

Uka, T., and DeAngelis, G.C. (2004). Contribution of area MT to stereoscopic
depth perception: choice-related response modulations reflect task strategy.
Neuron 42, 297–310.

Usher, M., and McClelland, J.L. (2001). The time course of perceptual choice:
the leaky, competing accumulator model. Psychol. Rev. 108, 550–592.

Vickers, D. (1979). Decision Processes in Visual Perception (London:
Academic Press).

Wagner, A.D., Shannon, B.J., Kahn, I., and Buckner, R.L. (2005). Parietal lobe
contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453.

Wald, A. (1947). Sequential Analysis (New York: Wiley).

Wald, A., and Wolfowitz, J. (1947). Optimum character of the sequential prob-
ability ratio test. Ann. Math. Stat. 19, 326–339.

Wallis, J.D., Anderson, K.C., and Miller, E.K. (2001). Single neurons in prefron-
tal cortex encode abstract rules. Nature 411, 953–956.

Wang, X.J. (2002). Probabilistic decision making by slow reverberation in
cortical circuits. Neuron 36, 955–968.

Watson, A.B. (1986). Temporal sensitivity. In Handbook of Perception and Hu-
man Performance, K.R. Boff, L. Kaufman, and J.P. Thomas, eds. (New York:
Wiley), pp. 6.1–6.43.

Webb, R. Dynamic Constraints on the Distribution of Stochastic Choice: Drift
Diffusion Implies Random Utility (August 1, 2013). Available at SSRN: http://
ssrn.com/abstract=2226018 or http://dx.doi.org/10.2139/ssrn.2226018.

Wimmer, G.E., and Shohamy, D. (2012). Preference by association: howmem-
ory mechanisms in the hippocampus bias decisions. Science 338, 270–273.

Wong, K.F., and Wang, X.J. (2006). A recurrent network mechanism of time
integration in perceptual decisions. J. Neurosci. 26, 1314–1328.

Yang, T., and Shadlen,M.N. (2007). Probabilistic reasoning by neurons. Nature
447, 1075–1080.

Zhou, Y., andWang, X. (2010). Cortical processing of dynamic sound envelope
transitions. J. Neurosci. 30, 16741–16754.

Znamenskiy, P., and Zador, A.M. (2013). Corticostriatal neurons in auditory
cortex drive decisions during auditory discrimination. Nature 497, 482–485.

Zohary, E., Shadlen, M.N., and Newsome, W.T. (1994). Correlated neuronal
discharge rate and its implications for psychophysical performance. Nature
370, 140–143.

http://ssrn.com/abstract=2226018
http://ssrn.com/abstract=2226018
http://dx.doi.org/10.2139/ssrn.2226018

	Decision Making as a Window on Cognition
	Introduction
	From Perception to Decision Making
	Signal Detection Theory
	From Evidence to Decision Variable
	From SDT to Sequential Analysis
	A Neural Correlate of a Decision Variable
	Principles, Extensions, and Unknowns
	Other Perceptual Decisions
	Touch
	Smell and Taste
	Hearing
	Interval Timing

	Beyond Perceptual Decisions
	Value-Based and Social Decisions
	Probabilistic Reasoning
	Memory Retrieval
	Strategy and Abstraction
	Decisions about Relevance
	Decisions to Move or Engage: Volition and Consciousness

	Toward a More Refined Understanding
	Closing Remarks
	Acknowledgments
	References


