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Model for the extraction of image flow

David J. Heeger

General Robotics and Active Sensory Processing Laboratory, Department of Computer and Information Science,
The University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received April 28, 1986; accepted April 1, 1987

A model is presented, consonant with current views regarding the neurophysiology and psychophysics of motion
perception, that combines the outputs of a set of spatiotemporal motion-energy filters to extract optical flow. The
output velocity is encoded as the peak in a distribution of velocity-tuned units that behave much like cells of the
middle temporal area of the primate brain. The model appears to deal with the aperture problem as well as the
human visual system since it extracts the correct velocity for patterns that have large differences in contrast at
different spatial orientations, and it simulates psychophysical data on the coherence of sine-grating plaid patterns.

1. INTRODUCTION

The world that we live in is constantly in motion: An ob-
server (either a biological organism or a computer being)
who depends on visual perception to gain an understanding
of his or her environment must be able to interpret visual
motion. Some of the important functions of motion percep-
tion are (1) to act as an early-warning system; (2) to allow an
observer to track the location of moving objects and recover
their three-dimensional structure; (3) to help an observer to
determine his or her own movement (egomotion) through
the environment; (4) to help an observer to divide the visual
tield into meaningful segments (e.g., moving versus station-
ary and rigid versus nonrigid).

The perception of visual motion does not depend on prior
interpretation or recognition of shape and form. However,
it does depend on there being motion information, i.e.,
changes in intensity over time throughout the visual field.
Without texture, a perfectly smooth moving surface yields
an image sequence in which most local regions do not change
over time. But in a highly textured werld (e.g., natural
outdoor scenes with trees and grass), there is motion infor-
mation throughout the visual field.

It is generally believed that the analysis of visual motion
proceeds in two stages. The first stage is the extraction of
two-dimensional motion information (direction of motion,
speed, displacement) from image sequences. The second
stage is the interpretation of image motion. Optical flow, a
two-dimensional velocity vector for each small region of the
visual field, is one representation of image motion. In this
paper I address the issue of extracting a velocity vector for
each region of the visual field by taking advantage of the
abundance of motion information in a highly textured image
sequence.

Most machine-vision efforts that try to extract image flow
employ just two frames from an image sequence—either
matching features from one frame to the next! or computing
the change in intensity between successive frames along the
image gradient direction.2¥ In a highly textured world nei-
ther of these approaches seems appropriate, since there may
be too many features for matching to be successful and the

image gradient direction may vary randomly from point to
point.*

There have recently been several approaches to motion
measurement based on spatiotemporal filtering®? that uti-
lize a large number of frames sampled closely together in
time. These papers describe families of motion-sensitive
mechanisms, each of which is selective for motion in differ-
ent directions, To be able to use such mechanisms in com-
puting optical flow, one must overcome two obstacles: (1)
the aperture problem and (2) the fact that the filter outputs
depend not solely on the velocity of a stimulus but rather on
the spatial and temporal frequencies of the stimulus.

In Section 2 I review the mathematics of motion in the
spatiotemporal-frequency domain. A family of motion-sen-
sitive Gabor filters is described in Section 3, and in Section 4
a model for extracting image velocity from the outputs of
these filters is derived. Section 5 reformulates the model in
terms of parallel, physiologically plausible mechanisms. In
Section 6 I discuss how the model deals with the aperture
problem and compare its performance with that of the hu-
man visual system. Finally, in Sections 7 and 8 the model is
used to simulate psychophysical and physiological data.

2. MOTION IN THE FREQUENCY DOMAIN

Watson and Ahumada®® and Fleet and Jepson!® have point-
ed out that some properties of image motion are most evi-
dent in the Fourier domain. In this section first one-dimen-
sional motion is described in terms of spatial and temporal
frequencies; then the observation is made that the power
spectrum of a moving one-dimensional signal occupies a line
in the spatiotemporal-frequency domain. Analogously, the
power spectrum of a translating two-dimensional texture
occupies a tilted plane in the frequency domain.

A. One-Dimensional Motion

The spatial frequency of a moving sine wave is expressed in
cycles per unit of distance (e.g., cycles per pixel), and its
temporal {requency is expressed in cycles per unit of time
(e.g., cycles per frame). Velocity, which is distance over
time or pixels per frame, equals the temporal frequency
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divided by the spatial frequency:
v = w/o,. (1)

When a signal is sampled evenly in time, frequency com-
ponents greater than the Nyquist frequency (1/2 cycle per
frame) become undersampled, or aliased. As a conse-
quence, if a sine-wave pattern is shifted more than half of its
period from frame to frame, it will appear to move in the
opposite direction. For example, a sine wave with a spatial
frequency of 1/2 cycle per pixel can have a maximum veloci-
ty of one pixel per frame, and a sine wave with a spatial
frequency of 1/4 cycle per pixel can have a maximum veloci-
ty of two pixels per frame; in other words, the range of
possible velocities of a moving sine wave is limited by its
spatial frequency.

Now consider a one-dimensional signal, moving with a
given velocity v, that has many spatial-frequency compo-
nents. Each such component w, has a temporal frequency of
wy, = w,v, while each spatial-frequency component 2w, has
twice the temporal frequency, w;, = 2w,v. In fact, the tem-
poral frequency of this moving sighal as a function of its
spatial frequency is a straight line passing through the ori-
gin, where the slope of the line is v.

B. Two-Dimensional Motion

Analogously, two-dimensional patterns (textures) translat-
ing in the image plane occupy a plane in the spatiotemporal-
frequency domain:

wp = Uw, + Ve, (2)

where v = (u, v) is the velocity of the pattern.® For example,
the expected value of the power spectrum of a translating
random-dot field is a constant within this plane and zero
outside it.

If the motion of a small region of an image may be approxi-
mated by translation in the image plane, the velocity of the
region may be computed in the Fourier domain by finding
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the plane in which all the power resides. To extract optical
flow we could take small spatiotemporal windows out of the
image sequence and fit a plane to each of their power spec-
tra. Below I present a technique for estimating velocity by
using motion-sensitive spatiotemporal Gabor-energy filters
to sample these power spectra efficiently (as depicted in Fig.
3 below).

C. The Aperture Problem in the Frequency Domain

An oriented pattern, such as a two-dimensional sine grating
or an extended step edge, suffers from what has been called
the aperture problem (for example, see Ref. 11). Forsucha
pattern there is not enough information in the image se-
quence to disambiguate the true direction of motion. At
best, we may extract only one of the two velocity compo-
nents, as there is one extra degree of freedom. In thespatio-
temporal-frequency domain the power spectrum of such an
image sequence is restricted to a line, and the many planes
that contain the line correspond to the possible velocities.
Normal flow, defined as the component of motion in the
direction of the image gradient, is the slope of that line.

3. MOTION-SENSITIVE FILTERS

Fahle and Poggio!2 and Adelson and Bergen have pointed
out that image motion is characterized by orientation in
space-time. For example, Fig. 1(a) depicts a vertical bar
moving to the right over time. Imagine that we film a movie
of this stimulus and stack the consecutive frames one after
the next; we end up with a three-dimensional volume
(space-time cube) of luminance data like that shown in Fig.
1(b). Figure 1(c) shows an x—t slice through this space-time
cube; the slope of the edges in the x—¢ slice equals the hori-
zontal component of the bar’s velocity (change in position
over time). The figure also depicts a linear filter that is
tuned for the motion of this moving bar. Thus motion is like
orientation in space-time, and spatiotemporally oriented

Fig. 1. Spatiotemporal orientation (redrawn from Ref. 7). (a) A vertical bar translating to the right. (b} The space-time cube for a vertical
bar moving to the right. (¢) An x—t slice through the space-time cube. The orientation of the edges in the x—t slice is the horizontal component
of the velocity. Motion is like orientation in space-time, and spatiolemporally oriented filters can be used to detect it.
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filters can be used to detect it. Three-dimensional (3-D)
Gabor-energy filters, presented below, are such oriented
spatiotemporal filters.!3

A. Gabor-Energy Filters
A one-dimensional sine- (or odd-) phase Gabor filter is sim-
ply a sine wave multiplied by a Gaussian window:

9
gl =~ —etp (i) sin(2rwt). 3)

2ro 2¢°
These filters were originally introduced by Gabor.™* The
power spectrum of a sine wave is a pair of impulses located at
w and —w in the frequency domain. The power spectrum of
a Gaussian is itself a Gaussian (i.e., it is a low-pass filter).
Since multiplication in the space (or time) domain is equiva-
lent to convolution in the frequency domain, the power spec-
trum of a Gabor filter is the sum of a pair of Gaussians
centered at w and —w in the frequency domain, i.e., it is a
bandpass filter, Thus a Gabor function is localized in a
Gaussian window in the space (or time} domain, and it is
localized in a pair of Gaussian windows in the frequency

domain.

Daugman!516 has extended Gabor filters to a family of
two-dimensional functions, an example of which is shown
along with its power spectrum in Fig. 2.

An example of a 3-D (space—time) Gabor filter is

1 xz }'2 t-z
glx,y,t)=————exp|— =+
J?rmzaxu‘yai 20" 2r3ry2 27,

X sin(27rwxux + 270, y + 27rw¢0i}, (4)

where (wy, wy,, @r,) is the center frequency (the spatial and
temporal frequency for which this filter gives its greatest
output) and (oy, 0y, ;) is the spread of the spatiotemporal
Gaussian window. Three-dimensional Gabor functions
look something like a stack of plates with small plates at the
top and the bottom of the stack and the largest plates in the
middle of the stack. The stack can be tilted in any orienta-
tion in space-time.

1t is a simple matter to tune the filter to different frequen-
cies and orientations while trading bandwidth for localiza-
tion. To change the frequency tuning we independently
VATV Wy, Wy, and wy,. Narrowing the Gaussian window in
the space—time domain broadens the bandpass window in
the spatiotemporal-frequency domain and vice versa.

Gabor filters have the additional property that they can be
built from separable components, thereby greatly increasing
the efficiency of the computations. A new technique for
computing Gabor-filter outputs from separable convolu-
tions is presented in Appendix A. Let k be the size of the
convolution kernel, let m be the number of images in a
sequence, and let each image be n pixels in size. By simpli-
fying the complexity!” of 3-D convolution from O(k*n?m) to
O(kn*m), separability speeds it tip by 2 orders of magnitude,
given a kernel size of 10 pixels.

The model presented in the following sections employs
quadrature pairs of filters, odd-phase and even-phase filters
of identical orientation and bandwidth. The sum of the
squared output of a sine-phase filter, Eq. (4), plus the
squared output of a cosine-phase filter gives a measure of
Gabor energy that is invariant to the phase of the signal.
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Fig. 2. Perspective views of a two-dimensional sine-phase Gabor
function and its power spectrum.

The frequency response of such a Gabor-energy filter is the
sum of a pair of 3-D Gaussians:

Glw,, &y, w) = (lfd)exp{—tln'z[cx?(mx - wxn}ﬂ
& o G}.z(w‘,. oo f-l-‘yo)z + 0, (@, — m:u}z“
+ (Ypexpl—dr[o, (w, + w, )’
+ a).z(w}, + :..1_),‘)}2 + rrtz(r.ot + wro)Z]}- (5)

Equation (5) means that a motion-energy filter with center
frequency (wy,, @y, wig) Will give an output of G(wy, w,, w) for
a moving sine grating with spatial and temporal frequencies
(wy, wy, @), The filter will give a large output for a stimulus
that has a great deal of power near the filter’s center fre-
quency and will give a smaller output for a stimulus that has
little power near the filter’s center frequency.

B. A Family of Motion-Energy Filters
The model uses a family of Gabor-energy filters, all of which
are tuned to the same spatial-frequency band but to differ-
ent spatial orientations and temporal frequencies, i.e., (w2
+ wy, )12 is constant for all the filters in one such family.
Eight of the twelve energy filters used in the present im-
plementation have their peak response for patterns moving
in a given direction—for example, one of them is most sensi-
tive to rightward motion of vertically oriented patterns,
while another is most sensitive to leftward motion. The
other four filters have their peak response for stationary
patterns, each with a different spatial orientation. The
power spectra of the twelve filters are pairs of 3-D Gaussians

'(each pair of Gaussians corresponds to one filter) that are

positioned on the surface of a cylinder in the spatiotempo-
ral-frequency domain (Fig. 3): eight of them around the top
of the cylinder, eight of them around the middle, and eight
around the bottom.

We can build several such families of filters tuned to
different spatiotemporal-frequency bands. For the current
implementation I have opted to compute a Gaussian pyra-
mid (described by Burt!®) for each image in the sequence,
and I convolve with a single family of filters at each level of
the pyramid. This is essentially the same as using families
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Fig. 3. The power spectra of the 12 motion-sensitive Gabor-energy
filters are positioned in pairs on a cylinder in the spatiotemporal-
frequency domain (temporal-frequency axis pointing up). Each
symmetrically positioned pair of ellipsoids represents the power spec-
trum of one filter. The plane represents the power spectrum of a
translating texture. A filter will give a large output only for a stimu-
lus that has much power near the centers of its corresponding ellip-
soids, and it will give a relatively small output only for a stimulus that
has no power near the centers of ils ellipsoids. Each velocity corre-
sponds to a different tilt of the plane and thus to a different distribu-
tion of outputs for the collection of motion-energy mechanisms.

of filters with equal bandwidths that are spaced 1 octave
apart in spatial frequency but are tuned to the same tempo-
ral frequencies.'?

4, MOTION ENERGY TO EXTRACT IMAGE
FLOW

Spatiotemporal bandpass filters such as Gabor-energy fil-
ters and those filters discussed in previous papers®1° are not
velocity-selective mechanisms but rather are tuned to -par-
ticular spatiotemporal frequencies. A single such mecha-
nism cannot distinguish among variations in the spatial-
frequency content of the stimulus, variations in its tempo-
ral-frequency content, and variations in its contrast. Butan
unambiguous velocity estimate may be computed from the
outputs of a collection of such mechanisms.

In what follows I describe a new way of combining the
outputs of a collection of motion-energy mechanisms in or-
der to extract velocity. The role of the filters is to sample
the power spectrum of the moving texture. The problem is
to estimate the slope of the plane in the frequency domain
that corresponds to the actual velocity. First, I derive equa-
tions for Gabor energy resulting from motion of random
textures or random-dot fields. Based on these equations 1
formulate a least-squares estimate of velocity.

Consider an analogous two-dimensional problem: esti-
mating the slope of a line that passes through the origin by
viewing it with a finite number of circular windows. Figure
4 shows a dotted line and two circular windows. We are
given a family of such windows, a finite number of them
centered at known positions. The only information that we
have is the number of points from the dotted line that lie
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within each window (in particular, we do not know the spac-
ing between the dots). The upper window in the figure has
many points within it, while the lower one has few; in other
words, the line must pass close to the center of the upper
window while staying far from the center of the lower one.
Therefore the slope of the dotted line is nearly the same as
that of the line passing directly through the center of the
upper window, and it is quite different from the slope of the
line passing through the center of the lower window. Notice
that it is impossible to estimate the slope given only one
circular window since the number of dots within a particular
window depends hoth on the slope of the line and on the dot
density.

A. Extracting Pattern Flow

In order to extract image velocity from the outputs of mo-
tion-energy filters we replace the dotted line in Fig. 4 with a
plane, and we replace the circular windows by 3-D Gaussian
windows. Circular windows simply count the number of
points within them. Gaussian windows count the points
and weight each according to its distance from the center of
the window. This is formalized by Parseval’s theorem,
which states that the integral of the squared values over the
space-time domain is proportional to the integral of the
squared Fourier components over the frequency domain:

r J r If(x, y, )*dxdydt

—o o —m

LJ J [ |F(w,, @, w,}|2dwxdw}.dw;

87 J-a

1 (==
=@LWJ J Pl wy, w:)dw,dw).dwi, (6)

RN —

where F{w,, w,, o) is the Fourier transform of f(x, y, {) and
P(w,, wy, w;) is the power spectrum. Convolution with a
bandpass filter results in a signal that is restricted to a
limited range of frequencies. Therefore the integral of the

Fig. 4. A problem analogous to that of extracting velocity: esti-
mating the slope of a line that. passes through the origin by viewing it
with a finite number of circular windows. The upper window has
many points within it, while the lower one has very few; in other
words, the line must pass close to the center of the upper window
while staying far from the center of the lower one.
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square of the convolved signal is proportional to the integral ‘

of the power of the original signal over this range of frequen-
cies.

Parseval’s theorem may be used to derive an equation that
predicts the output of a Gabor-energy filter in response to a
moving random texture, The expected value of the power
spectrum of a translating random-dot field is zero, except
within a plane [Eq. (2})], where it is a constant k. The
frequency response of a Gabor-energy filter is the sum of a
pair of 3-D Gaussians [Eq. (5)]. By Parseval’s theorem,
Gabor energy in response to a moving-random texture is
twice the integral of the product of a 3-D Gaussian and a
plane; by substituting Eq. (2) for @ in Eq. (5), multiplying by
two, and integrating over the frequency domain we get

R, v, k) = (£2) f :

—m

J exp{—éhrz[axg{wx - mxu)2

—

% — w )2 2 s ¥
+ 05wy — w0, )* + 0 (ue, + oo, — @ ) de,de,.

(7
This integral evaluates to
Rlu, v, k) = Hy(u, v, k)exp[—4ﬂ20'x20'y20‘r2H1(u, o],
Hou, v)
H =———,
1(u, v) Hoiinct)
Hy(u, v) = (uw, + vw, + wto)‘z,
Hy(u, v) = (uo,0)? + o,0,)% + (0,0,)%
kQ
Hyu, v, k) = (8)

8[Hy(uw, )] V2

For a family of Gabor-energy filters, we get a system of

equations (one for each filter) in the three unknowns (u, v,
k). The factor H,(u, v, k) that appears in each of these
equations can be eliminated by dividing each equation by
the sum or the average of all of them.

This results in a system of equations depending only on u
and v that predict the output of Gabor-energy filters due to
local translation. These predicted energies are exact for a
pattern with a flat power spectrum. But what if the power
spectrum of the pattern is not flat? In particular, what if
the image contrast is different for different spatial orienta-
tions? Rather than dividing each filter output by the sum of
all the filter outputs, we can group the filters according to
their spatial orientation and normalize each spatial orienta-
tion separately.

A least-squares estimate for 12 and v minimizes the differ-
ence hetween the predicted and measured motion energies.
Let %2; be the predicted motion energies given by Eqs. (8) for
a family of filters: each i corresponds to a filter with a
different center frequency. Let m; be the observed motion
energies—the outputs of that family of filters. Let m; be the
sum of the outputs of those filters that have the same pre-
ferred spatial orientation as the ith filter, and let %, be the
corresponding sum of the predicted motion energies. A
least-squares estimate of v = (u, v) minimizes

12 R, v) 5
flu,v) = Z[ﬁf%_mi] . (9)

i=1
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There are standard numerical methods for estimating v =
(1, v) to minimize Eq. (9), e.g., the Gauss-Newton gradient-
descent method.2®

Alternatively, the least-squares estimate of v = (u, v)
maximizes

12
Flu,v) = " (m)* = f(u, v)
i=1

Ri(u, v) 2 (i0)
*Zim M) e

where f(i, v) is given by Eq. (9).2 In Section 5 I describe a
parallel technique for locating this maximum.

B. The Algorithm

The main steps in the computations performed by the model
are (1) to convolve the image sequence with 3-D Gabor
filters, (2) to compute motion energy as the squared sum of
the sine- and cosine-phase Gabor filter outputs, and (3) to
estimate velocity by either minimizing Eq. (9) or maximizing
Eq. (10). In this section I explain the additional steps that
need to be computed, and I summarize the entire algorithm.

First, Parseval's theorem, Eq. (6), relates an integral over
the space-time domain to an integral over the frequency
domain: since the filters are localized in both domains, con-
volving with a 3-D Gaussian is one way to approximate this
integral. We can think of the model as computing the aver-
age image velocity within this Gaussian window.

Of course, Gaussian convolution will tend to smooth over
motion boundaries and other regions where the velocity
changes rapidly from point to point. Some possible solu-
tions to this problem are (1) to use images of higher resolu-
tion and (2) to use a different method for combining infor-
mation other than Gaussian convelution, e.g., relaxation la-
beling methods (for references, see Hummel and Zucker??)
and finite-element regularization methods (see Ref. 23).

There are two situations for which this smoothing prob-
lem is particularly bad. First, in regions moving with high
speed, we must use filters that are higher in the pyramid, i.e.,
of lower spatial resolution. Second, where there is a region
of low image contrast adjacent to one of high contrast, the
filter outputs for the high-contrast region (since they are
greater on average) will bias the velocity estimates for the
low-contrast region. The former situation may be con-
trolled by incorporating eve/camera movements: an initial
low-resolution estimate may be used to drive tracking eye
movements, thereby decreasing the image velocity and al-
lowing for estimates of higher spatial resolution.

Finally, a problem with Gabor filters themselves is that all
but the sine-phase filters have some de response. If an
image is very bright (large mean luminance) and of low
contrast, the output of the filter may be dominated by re-
sponse to the dc rather than to the image-contrast signal.
Clearly, this is undesirable. This difficulty can be alleviated
by first subtracting the local mean luminance, e.g., by con-
volving with a center-surround filter that has a sharp posi-
tive center and a broad negative surround.?

In summary, an algorithm for extracting image flow pro-
ceeds as follows:
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1. Compute a Gaussian pyramid for each image in the
image sequence.

2. Convolve each of the resulting image sequences with a
3-D center-surround filter to remove the dc and lowest spa-
tial frequencies.

3. Convolve each sequence with the separable filters de-
scribed in Appendix A and compute the sine- and cosine-
phase Gabor-filter outputs as linear combinations of these
separable convolutions.

4. Compute motion energy as the squared sum of the
sine- and cosine-phase Gabor filter outputs.

5. Convolve the resulting motion energies with a Gauss-
ian to approximate the integral in Parseval’s theorem.

6. Find the best choice of 1 and v given by Eq. (9) or (10),
e.g., by employing the Gauss-Newton gradient-descent
method or the parallel technique presented in Section 5.

C. Some Results

All the results presented in this paper were produced with a
single choice for each of the parameters of the model: The
spatial-frequency tuning of each Gabor filter is (wy,2 + ,,2)1/2
= 1/4 cycle per pixel; the temporal-frequency tunings are
either w,, = 0 cycle per frame (stationary filters) or w,, = £1/4
cycle per frame (right-left, up—-down, etc.); the standard
deviation of all the spatial Gaussians is o, = g, = 4 (the
spatial kernel size of the filters is 23 pixels), and that of the
temporal Gaussians is o; = 1 (the temporal kernel size is 7
frames). Except for the Yosemite fly-through sequence dis-
cussed below, all the results are computed using only the
lowest level of the pyramid.

Each vector in the flow fields depicted below represents a
motion in a direction given by the vector’s angle at a speed
given by the vector’s length. Errors in the velocity estimates
are expressed in terms of the percentage error in each com-
ponent of the actual velocity vectors.

Translating Image Sequences

Translating image sequences were generated from a tex-
tured image by (1) enlarging the image to four times its
original size, (2) shifting the image in each frame by an
integral number i of pixels horizontally and an integral num-
ber j of pixels vertically, and (3) reducing each image in the
resulting sequence to the original resolution. The final re-
sult is an image sequence with velocity (i/4, j/4) pixels per
frame.

The model gives accurate velocity estimates (within 10%
of the actual velocities) for translating image sequences of a
wide variety of textured patterns, including random-dot
patterns (with dot densities ranging from 5 to 50%), images
of fractal textures,” some sine-grating plaid patterns (dis-
cussed in Section 6), and natural textures (discussed below).

Noise Sensitivity

Translating random-dot image sequences were used to study
the error in the velocity estimates. For image sequences
with speeds ranging [rom 0.25 to 1.75 pixels per frame, per-
centage error is roughly normally distributed, with a mean of
—2.9% and a standard deviation ol 3.6.

Noise sensitivity was studied by adding spatiotemporal
white (Gaussian) noise to translating random-dot se-
quences. Define the signal-to-noise ratio (S/N) to be the
brightness of the image dots divided by the standard devi-

David J. Heeger

ation of the noise. If S/N = 10, then the mean percentage
error in the estimates is —4.3% and the standard deviation is
4.1, This means that when the standard deviation of the
sensor noise is as much as 10% of the sensor’s dynamic range,
most velocity estimates are still within 10% of the actual
values.
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Fig. 5. (a) Fourteen natural textures (the two texture squares at
the upper left are the same, and so are the two at the upper right}.
Each texture square was used to generate motion sequences trans-
lating 1/2 pixel per frame in each of eight directions. The velocities
extracted by the model are accurate to within 10%. (b) Example
flow field extracled from a motion sequence generaled from the
straw texture in the upper-left-hand corner of (a). The actual
motion was (—0.5, 0.0). The mean of the extracted velocities is
{—0.473, —=0.04), and the standard deviation for both the horizontal
and vertical components is 0.01.
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Fig.6. A rotating random-dot sphere. (a) A frame from the motion sequence

el. (d) Difference between (b) and (c).

Images of Natural Textures

Image sequences were generated from each of the 14 natural
textures shown in Fig. 5(a). A sample flow field, shown in
Fig. 5(b), was extracted from an image sequence of the straw
texture in the upper-left-hand corner of Fig. 5(a). The mod-
el correctly estimates the velocity (to within 10%) for every
one of these textures. This is particularly impressive for the
straw texture in the upper-left-hand corner, the brick tex-
ture in the lower-right-hand corner, and the texture second
from the lower-right-hand corner of 5(a) because they have
such strong spatial orientations. The model is capable of
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. (b) The actual flow field. (c) Flow field extracted by the mod-

‘recovering accurate velocity estimates for these textures
since it normalizes each spatial orientation separately.
Conversely, if we normalize the filter outputs isotropically,
i.e., by dividing each motion energy by the sum of all of them,
then the estimates for these three textures are erroneous.

A Rotating Sphere

Figure 6(a) shows one frame of a random-dot image se-
quence of a sphere rotating about an axis through its center
in front of a stationary background. Figure 6(b) shows the
actual flow field for this image sequence, 6(c) shows the flow
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Fig.7. (a) One frame of an image sequence flying through Yosemite valley.

(d) Difference between (b) and (c).

field extracted by the model, and 6(d) shows the difference
between them. The effect of the Gaussian smoothing is
clearly evident, as there are errors along the motion bound-
ary.

A Realistic Example

Figure 7(a) shows one frame of a computer-generated image
sequence of a flight through Yosemite valley. Each frame
was generated by mapping an aerial photograph ento a digi-
tal-terrain map (altitude map). The observer is moving
toward the horizon. The clouds in the background were
generated with fractals (see Mandlebrot? and recent SIG-
GRAPH? conference proceedings for definitions and refer-
ences) and move to the right while changing their shape over
time.

Figure 7(b) shows the actual flow field for this image
sequence, Fig. 7(c) shows the flow field extracted by the
model,28 and Fig. 7(d) shows the difference between them.
The effect of Gaussian smoothing is evident along the
boundary at the horizon. Small errors are also evident on
the face of El Capitan (in the lower left) since this image
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(b) The actual flow field. (c) Flow field extracted by the model.

region moves with high speed (see the discussion in Subsec-
tion 4.B) and in the cloud region since the clouds change
shape over time while moving rightward.

5. A PARALLEL IMPLEMENTATION

Electrophysiclogical studies of the middle temporal (MT)
area? in macaque and owl monkeys reveal cells that are
velocity tuned. Here we reformulate the last step of the
model in terms of parallel, physiologically plausible, veloci-
ty-tuned mechanisms, and in Section 8 the model is com-
pared with physiology. First, I explain how to build veloci-
ty-tuned units (analogous to the velocity-tuned cells of area
MT) by combining the outputs of motion-energy filters (re-
call that the motion-energy filters are not themselves veloci-
ty tuned since they confound spatial-frequency, temporal-
frequency, and image contrast).

Step 6 in the algorithm in Subsection 4.B is to find the
maximum of a two-parameter function, Eq. (10). One way
to locate this maximum is to evaluate the function in parallel
at a number of points (say, on a fixed square grid®) and to
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Fig. 8. Distribution of outputs of velocity-tuned units for a moving
random-dot field moving leftward and downward 1 pixel per frame.
Each point in the image corresponds to a different velocity; for
example, v = (0, 0) is at the center of the image, v = (2, 2) at the top
right-hand corner. The maximum in the distribution of outputs
corresponds to the velocity extracted by the model. Units in the
brighter regions have positive outputs, and units in the darker
regions have negative (inhibited) outputs.

pick the largest result. In the context of the model each-

point on the grid corresponds to a velocity. Thus, evaluat-
ing the function for a particular point on the grid gives an
output that is velocity tuned.

For each velocity v = (i, v), Flu, v) in Eq. (10) is a measure
of how closely v approximates the true velocity—in other
words, for a fixed u and v, F(u, v) is tuned to a particular
velocity, Local image velocity may be encoded as the maxi-
mum in the distribution of the outputs of a number of such
velocity-tuned units, each tuned to a different v. The units
tuned to velocities close to the true velocity will have rela-
tively large outputs (small difference between the predicted
and measured motion energies), while those tuned to veloci-
ties that deviate substantially from the true velocity will
have small outputs.

For a fixed velocity, the predicted motion energies #;(u, v)
defined by Egs. (8) are fixed constants; denote them by w;;,
where each i corresponds to a different motion-energy filter
and each j corresponds to a different velocity. We may
rewrite Eq. (10) for a fixed v as

12 w.. 9
= 3 = (migt =)
i=1

[

(11)

where I; is the response of a single velocity-tuned unit and
w;; and W;; are constant weights corresponding to the ith
motion energy for the jth velocity. A mechanism that com-
putes a velocity-tuned output from the motion-energy mea-
surements performs the following simple operations:

1. Alinear stage, a weighted summation given by [/;(w;;/
E,‘_,‘) = m,—].

2. A nonlinear stage, squaring.®!

3. A second linear stage, the summation over i.

An example of the outputs of a set of velocity-tuned units
is shown in Fig. 8, which displays a map of velocity space,
with each point corresponding to a different velocity. The
brightness at each point is the output of a unit tuned to that
velocity; therefore the maximum in the distribution of out-
puts corresponds to the velocity extracted by the model.

Vol. 4, No. 8/August 1987/J. Opt. Soc. Am. A 1463

6. DEALING WITH THE APERTURE PROBLEM

In this section I use a class of moving stimuli known as sine-
grating plaids in order to test the model’s capability of solv-
ing the aperture problem, and I compare the model’s perfor-
mance with that of the human visual system. I also develop
a curvature measure that enables the model to recognize
when there is an ambiguous velocity estimate resulting from
the motion of a strongly oriented pattern (such as a single
grating); in such cases, the model may choose the normal-
flow velocity.

A. Sine-Grating Plaids

A sine-grating plaid is the sum of two moving gratings and
may be seen as a single coherent plaid motion. The gratings
are combined not as the vector sum or the vector average of
the two component normal-flow velocities but rather as the

(b)

B
-

{c)

Fig. 9. The perceived motion of two moving gratings is the inter-
section of the perpendiculars to the two velocity vectors. (a) A
single moving grating: the diagonal line indicates the locus of veloe-
ities compatible with the motion of the grating. (b), (c) Plaids
composed of two moving gratings. The lines give the possible mo-
tions of each grating alone. Their iniersection is the only shared
motion and corresponds to what is seen. (Redrawn from Ref. 32.)
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Fig. 10. (a) Flow field extracted by the model for a plaid pattern
made up of a sine grating moving leftward 1 pixel per frame plus a
sine grating moving downward 1 pixel per frame. The combined
motion extracted by the model is 1 pixel leftward and 1 pixel down-
ward in each frame. (b) Flow field for a plaid pattern made up of a
sine grating moving leftward 1 pixel per frame plus a sine grating
moving downward and leftward 1/4 pixel each frame. The counter-
intuitive combined motion is leftward 1 pixel per frame and upward
1/2 pixel per frame as shown in the flow field extracted by the model.
The spatial frequency of the gratings for both (a) and (b} was 0.25
cyele pixel L

intersection of the perpendiculars Lo the two velocity vec-
tors. Figure 9(a) depicts a single grating moving behind an
aperture; the arrows represent flow vectors, and the diagonal
line represents the locus of velocities compatible with the
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grating’s motion. There is an infinite number of such com-
patible motions any of which will result in exactly the same
stimulus. Figure 9(b) shows a plaid composed of two or-
thogonal gratings moving at the same speed; the intersection
of the perpendiculars to the two normal-flow velocities (the
intersection of the two constraint lines) is the only shared
motion and corresponds to what is seen. TFigure 9(¢) shows a
plaid composed of two oblique gratings, one moving slowly
and the other more rapidly; one grating moves rightward and
the other moves downward and rightward, but the pattern
moves upward and rightward.

The model recovers the correct pattern-flow velocity for a
number of such plaids.?? Examples of flow fields extracted
by the model for plaids made up of gratings with equal
contrasts and spatial frequencies are shown in Fig. 10. The
combined motion extracted by the model in both Figs. 10(a)
and 10(b} is accurate to within 5%.

Adelson and Movshon* studied the phenomenon of co-
herence hy varying the angle between the two gratings, their
relative contrasts, and their relative spatial frequencies.
They found that for a range of relative angles, contrasts, and
spatial frequencies the two gratings are seen as a single
coherent plaid motion and that beyond this range the two
gratings look like separate motions, one moving past the
other. The phenomenon of coherence tests the human visu-
al system’s ability to solve the aperture problem: Given the
ambiguous motion of a single moving grating, how much
additional information is needed from the second grating to'
give an unambiguous coherent percept?

The model is capable of extracting the correet pattern-
flow velocity for plaids that have large differences in con-
trast; e.g., for plaids made up of orthogonal gratings, velocity
estimates are accurate to within 10% for contrast ratios of
greater than 32:1, This is comparable with human perfor-
mance.*  As the contrast difference between the two com-
ponent gratings gets larger than this, the model begins to tilt
the extracted velocity vector toward the higher-contrast
grating. Although the perceived velocity of plaids has not
yet been measured precisely,*® Adelson™ notes that observ-
ers also see the direction of motion tilt toward the higher-
contrast grating when the relative contrast difference is
large.

If the model is to withstand large contrast ratios, it is
crucial that the spatial bandwidths of its filters be less than
their temporal bandwidths; in the frequency domain, this
means that the filters are oblong hotdog-shaped (longer in ¢
than in x and y) instead of spherical in shape. Asanillustra-
tive example, consider a plaid made up of rightward- and
upward-moving gratings. The idea of normalizing the filter
outputs separately for each spatial orientation is that the
up—down filters should give the same responses relative to
one another regardless of the contrast of the rightward grat-
ing. If the filters were spherical in shape, then the response
of the downward filter would be dominated by the rightward
grating (the impulse from a rightward grating is closer than
that from an upward grating to the center frequency of the
downward filter). This would be bad because we want the
relative responses of the up and down filters to be unaffected
if the contrast of the rightward grating is varied. But, since
the filters are oblong in shape, the response of the downward
filter is dominated by the grating moving upward for a wide
range of relative contrasts.
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(b)

(d)

Fig. 11. Distribution of outputs of velocity-tuned units for sine-grating plaids made up of orthogonal gratings. The gratings moved 1 pixel
frame~! leftward and downward, and their spatial frequency was 0.25 cycle pixel™l. (a) The two component gratings had the same contrast.
The maximum in the distribution of outputs corresponds to the velocity extracted by the model. (b) One grating had twice the contrast of the
other grating. (c) One grating had four times the contrast of the other grating. (d) One grating had zero contrast; the aperture problem is evi-
dent, as there is a ridge of maxima. Each velocity-tuned unitl along this ridge has the same output (to within 1 part in 100,000).

B. Recognizing Ambiguity

We can think of the outputs of the velocity-tuned units as
forming a surface in velocity space: the height of the surface
at each velocity is given by the output of a unit tuned to that
velocity. As the contrast of one of the gratings is decreased
relative to the contrast of the other, the peak in this surface
gets broader in one direction. This becomes evident if one
compares Figs. 11(a)-11(d). In Fig. 11(a), the two compo-
nent gratings are of equal contrast, so the peak is symmetri-
cal. When the contrast ratio is increased, as in Figs. 11(h)
and 11(c), the peak elongates in one direction. Eventually,
as shown in Fig. 11(d), the peak turns into a ridge.

When there is an unambiguous peak we can extract the
correct pattern-flow velocity, but how do we know if there is
a ridge or a peak? Intuitively, it is a peak if it falls off
sharply in all directions and it is a ridge if it stays constant in
one direction. We know from differential geometry (for
example, see Ref. 36) that a surface can be characterized
locally by its maximum and minimum curvatures. If the
minimum curvature of a surface is small or zero at a point
while the maximum curvature is large, then the surface looks
like a ridge. If both curvatures are large, then it looks like a
peak.

The minimum curvature of the surface at the peak divided
by the height ol the peak is a measure of whether a moving

pattern gives an unambiguous velocity estimate. The mini-
mum curvature can be computed at any point on the surface
of velocity-tuned outputs from the first and second deriva-
tives of Eq. (10). Figure 12(h) shows a plot of the curvature
measure as the relative contrast of a plaid’s component grat-
ings is varied; the curvature measure decreases monotonical-
ly with contrast for a wide range of test contrasts. We may
pick a value to act as a threshold: if the curvature measure
is above this value we pick the pattern flow given by the
location of the peak, and if it falls below this value we may
pick the normal-flow vector®” or we may choose any other
velocity along the ridge (a familiar example of when people
see motion other than in the normal-flow direction is the
barberpole illusion).

7. SIMULATING PSYCHOPHYSICS

In this and the next section, I use the model to simulate
psychophysical and physiological data. For the most part,
this simulation merely demonstrates that the model is con-
sistent with some of the experimental results on biological
motion perception. The emphasis in future research will be
to compare the predictions made by this model with those
made by other image-flow models and to test those predic-
tions with further experiments.
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Fig. 12. The influence of contrast on the coherence of sine-grating
plaids. (a) One grating had a fixed contrast of (.3, while the other
was of variable contrast. The two gratings moved at an angle of
1352, both had a spatial frequency of 1.6 cycles deg~!, and both
moved at 3 deg sec™!. The plot shows the probability that the
ohserver judged the two gratings to be coherent. The dotted lines
indicate the test-grating contrast needed to attain threshold (30%
probahility) coherence. Subject, EHA. (Replotted from Ref. 32.)
(b) One grating had a lixed contrast of 0.3, while the other was of
variable contrast. The two gratings moved at an angle of 120°, both
had a spatial frequency of 0.25 cycle pixel™!, and their speeds were
chosen so that the coherent plaid moved at a speed of 2/3 pixel
frame™!. The plot shows the curvature measure as the contrast of
the test grating was varied. The dotted lines indicate the test-
grating contrast needed to attain threshold (0.006 curvature) eoher-
ence,

In this section the curvature measure presented above is
used to simulate the psychophysical data on the coherence of
sine-grating plaids. Figure 12(a) plots the psychometric
function for coherence (probability of coherence) as the con-
trast of one of the component gratings is reduced. Figure
12(b) shows a plot of the curvature measure as the relative
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contrast of the two component gratings is varied. In each
case we may pick a threshold value (e.g., 50% probability,
0.006 curvature). Then we may vary the angle between the
two component gratings or we may vary their relative spatial

0.3 o
} |
Contrast
0.1
| I T 1T 11 | I I
1.0 3.0
Spatial Frequency (cycles per deg)
@
0.3 -
Contrast
0.1 -
T T T T [ [ [
0.1 0.3
Spatial Frequency (cycles per pixel)
(b)

Fig. 13. The influence of spatial frequency on the coherence of
sine-grating plaids. (a) One grating had a fixed contrast of 0.3,
while the other was of variable contrast. The two gratings moved at
an angle of 135 deg, and both moved at 3 deg sec™!. The test grating
was of variable contrasl and variable spatial frequency. The plot
shows the threshold contrast for coherence for a range of test spatial
frequencies when the first grating was fixed at 2.2 cycles deg™!.
Subject, PA. (Replotted from Ref. 32.) (h) One grating had a fixed
contrast of 0.3 and a fixed spatial frequency of 0.25 cycle pixel™!,
while the other was of variable contrast and spatial frequency. The
two gratings moved at an angle of 120 deg, and their speeds were
chosen so that the coherent plaid moved al a speed of 2/3 pixel per
frame. A fixed value was chosen as the threshold value for the
curvature measure. This value was chosen in order to match the
psychophysical data in (a) for the case when the fixed grating and
the test grating were of equal spatial frequency. For each test
grating, the plot shows the contrast needed at that spatial frequency
for the curvalure measure Lo attain that value.
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Fig. 14. The influence of angle on the coherence of sine-grating
plaids. (a) One grating had a fixed contrast of 0.3, while the other
was of variable contrast. The spatial frequency of one grating was
fixed at 2.4 eycles deg™!, and that of the second grating was fixed at
1.2eyclesdeg™l. Asthe angle between the two gratings varied, their
speeds were chosen so that the coherent plaid moved at a lixed speed
of 7.5 deg sec™!. The plot shows the threshold contrast for coher-
ence for a range of angles. Subject, EHA. (b) One grating had a
fixed contrast of 0.3, and both had a fixed spatial frequency of 0.25
eycle pixel=!. The speed of the gratings was chosen so that the
coherent plaid moved at a fixed speed of 2/3 pixel frame. A fixed
value was chosen as the threshold value for the curvature measure.
[This value was chosen in order to match the psychophysical data in
(a) for an angle of 120 deg.] For each angle, the plot shows the test-
grating contrast needed for the curvature measure to attain that
value.

frequencies, and for each test case we measure the contrast
that is needed to attain those threshold values.

In this way Adelson and Movshon® measured the thresh-
old elevation of coherence for plaids made up of gratings
with different spatial frequencies, plotted in Fig. 13(a). As
the frequencies of the two gratings were made different, the
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tendency to cohere was reduced and the contrast needed for
coherence was increased. Figure 13(b) was generated by
choosing a threshold value for the curvature measure; the
plot shows the contrast elevation needed at each relative
spatial frequency for the curvature measure to attain that
value. Comparison of Figs. 13(a) and 13(b) indicates that
the model’s mechanisms are tuned to a somewhat narrower
band of spatial frequencies than are the mechanisms of the
human visual system.

Figure 14(a) shows the effect on coherence of varying the
angular separation between the two gratings. As the angle
was increased from 90° the tendency to cohere was reduced
and the contrast needed for coherence was increased. The
simulated data, plotted in Fig. 14(b), are similar to those
plotted in Fig. 14(a), although the rate of increase is some-
what dilferent.

The plots in Figs. 13 and 14 are promising. There are
several parameters of the model that may be adjusted with
the hope of matching the psychophysical data exactly®: (1)
the spatial bandwidths of the motion-energy filters—broad-
er spatial bandwidth should make the plot in Fig. 13(b)
broader; (2) the ratio of the temporal bandwidths to the
spatial bandwidths—decreasing this ratio should make the
plot in Fig. 14(b) steeper; and (3) the nature of the nonlin-
earity—for example, squaring accentuates the contrast dif-
ference more than absolute value and should tend to make
the plot in Fig. 13(b) narrower and the plot in Fig. 14(b)
steeper.

8. COMPARING THE MODEL WITH
PHYSIOLOGY

Figure 15 depicts the correspondence between the computa-
tions performed by the model and the stages of the visual
motion pathway of the primate brain. The model’s compu-
tations are simply a series of linear steps (weighted sums)
alternating with point nonlinearities. In this section, I com-
pare the model with some of the known functional properties
of cells in the visual motion pathway.

MODEL PHYSIOLOGY
velorﬂtr?fi-tlsuned

[ motion energies |
| simple cells |

&

Center‘-surround bipolar cells
filter

Fig.15. Comparing the model with physiology. The model’s com-
putations are simply a series of linear steps (weighted sums) alter-
nating with point nonlinearities.

lﬁ) Gabor ﬁllers]
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A. Some Differences

The receptive fields of cells in area M'T are much larger than
their counterparts in striate cortex (V1). Newsome et al.2?
report that they are 5-20 times larger in area, and Movshoni?
reports that they are as much as 50 times larger. The recep-
tive fields of the model’s velocity-tuned units are only about
four times as big as the Gabor-energy filters.

The nonlinear stages in the model are different from those
found in physiology. A future implementation of the model
will replace squaring with a more biologically plausible S-
shaped nonlinearity, such as that measured from photore-
ceptor cells (for example, see Ref. 41).

The model is implemented as a series of independent
families of motion-energy filters arranged in an orderly man-
ner; each filter has one of four spatial orientations and one of
three temporal-frequency tunings, and the families of filters
have equal bandwidths and are spaced 1 octave apart in
spatial frequency. Cellsin V1 are distributed more haphaz-
ardly. Some interesting experiments involve studying pop-
ulations of cells in order to determine whether they are
restricted to a single band of temporal-frequency tunings
and whether their bandwidths and frequency tunings vary
inversely with each other.

For many image sequences, the speed of image motion is
faster in the periphery of the visual field then in the center
(e.g., when one is walking down a hallway or through a
forest). Cellsin visual cortex generally have larger receptive
fields and lower spatial-frequency tunings at greater eccen-
tricities, i.e., cells with receptive fields near the fovea are well
suited for estimating slow speeds, while those farther out are
suited for high speeds. The model, conversely, currently
has units tuned to each spatial-frequency band at every
image location.

B. Similarities with Striate Cortex

Two-dimensional Gabor filters are a physiologically plausi-
ble model for the two-dimensional receptive-field structure
in striate cortex. Recent neurophysiological experiments
have shown that Gabor functions may constitute a hetter
model of cortical simple-cell structure than previously pro-
posed receptive-field models.*>**  Electrophysiological
studies* also indicate that the space-time receptive-field
structure of simple cells is similar to that of 3-D Gabor filters
and to that of the Adelson-Bergen” and Watson-Ahumada®
filters. Moreover, experiments by Emerson et al.45 suggest
that the space-time receptive-field structure of complex
cells is well modeled by motion energy.

In principle, the model could be built by using filters with
an even more biologically plausible temporal response
(space-time Gabor filters are noncausal), but the straight-
forward analytical form of Gabor filters (Gaussians in the
frequency domain) is what simplified the task of evaluating
the integral in Eq. (7). This integral is used to compute the
weights, w;; and w;;, in Eq. (11); different filters would yield
different weights. For a particular filter it may not be possi-
ble to derive an analytical formula for computing these
weights, In such cases the weights might be “learned” by
implementing the model as a neural network with an itera-
tive learning rule (for references, see Rummelhart5).

As was discussed in Section 6, the spatial bandwidths of
the model's filters must be less than the temporal band-
widths. For example, the filter that is most sensitive to
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leftward motion of vertically oriented gratings gives a larger
output for rightward grating motion than for upward or
downward grating motions. One could measure experimen-
tally whether this is true for direction-selective striate cells.

C. Similarities with Middle Temporal Area

Both MT cells and the model’s units increase their outputs
as image contrast is increased. Note, however, that the
location of the peak output in the distribution of velocity-
tuned units does not change as image contrast is varied.

MT cells are inhibited (for example, see Ref. 47) by mo-
tion opposite their preferred velocity (the same speed as the
latter but in the opposite direction). The model’s velocity-
tuned units may give positive or negative outputs; interpret-
ing the negative outputs as inhibition, the model units are
similarly inhibited by motion opposite their preferred veloc-
ity. '

Most MT cells are more-or-less spatiotemporally separa-
ble,* meaning that they prefer the same temporal frequency
for a range of spatial frequencies (or vice versa). The model
units are similarly spatiotemporally separable. This is sim-
ply because the axes of the elliptical-Gaussian windows of
the 3-D Gabor filters in the model are parallel to the x, ¥, and
t axes, i.e., these Gaussians are separable in space—time.
Though the 3-D Gabor filters are not themselves spatiotem-
porally separable, the Gabor-energies and the velocity-
tuned units are.

Felleman and Kaas? report that the majority of MT cells
respond best to a particular velocity, with marked attenua-
tion for speeds greater than or less than the preferred.
Some neurons fail to show significant response attenuation
even at the lowest test velocity (low-pass speed tuning),
while others fail to attenuate at the highest velocities (high-
pass speed tuning).

The model units have speed-tuning curves that resemble °
MT speed tunings. For each stimulus the model encodes
velocity as the peak in the distribution of outputs of the
velocity-tuned units. A speed-tuning curve plots the output
of a single unit for a variety of stimuli. Consider a pattern
translating with speed s = Ju? + v2. The output of the unit
that corresponds to the location of the peak depends on two
terms, '"le(m,-)'z and wﬂfflf(u, v), from Eq. (10). The sec-
ond term will be maximized for speed s, but the first term
may be maximized for some other speed. Thus, in general,
the unit that corresponds to speed s will be tuned to a speed
other than s. In other words, the units generally offer the
most information about speeds different from their tuning
speeds. The result of this is that some of the model units
have sharply peaked speed-tuning curves, while others
(those that correspond to slower speeds) are low-pass speed
tuned. There are no units in the current implementation of
the model that are high-pass speed tuned.

Movshon et al.*¥ have classified most of the cells that they
have probed into two types by observing their responses to
sine-grating plaid stimuli. The first type, called pattern-
flow cells, are tuned to the velocity of the pattern as a whole,
exhibiting their peak response when the combined plaid
pattern moves at the preferred velocity regardless of the
motion of the two component sine-gratings. The second
type, called component-flow cells, yield their peak response
when either of the two component sine-gratings moves at the
preferred velocity.
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(a) (c)
{b) (d)

Fig. 16. Direction tuning of component- and pattern-flow model
units. (a) Response of a typical component-flow unit as a function
of direction of motion for moving gratings that were matched to the
unit’s preferred speed and spatial frequency. (b) Direction tuning
of the same component-flow unit for sine-grating plaids; the tuning
curve has two lobes, indicating that the unit responds when either of
the two component sine-gratings move at the preferred velocity,
similar to component MT cells. (c) Direction tuning of a pattern-
flow unit for gratings. (d) Direction tuning of the same pattern-
flow unit for plaids; the single lobe indicates that the unit responds
{o the comhined pattern motion regardless of the motion of the
component gratings, similar to pattern MT cells.

In the context of the model, the outputs after operation 2
of the algorithm in Section 5 correspond to component-flow
cells and the outputs after operation 3 correspond to pat-
tern-flow cells. Direction-tuning curves for a typical com-
ponent-flow unit are shown in Figs. 16(a) and 16(b). Fora
single moving grating, the unit has a single preferred direc-
tion of motion corresponding to the normal-flow velocity of
the grating. It has two peaks for a plaid, each of which
corresponds to the normal-flow velocity of one of the compo-
nent gratings. Direction-tuning curves for a typical pat-
tern-flow unit are shown in Figs. 16(c) and 16(d). The cell
has a single preferred direction of motion for single moving
gratings as well as for plaids.

Finally, the model units have different direction- and
speed-tuning curves for different stimuli. In particular,
both the model units and the MT cells*® have sharper direc-
tion-tuning curves for moving random-dot fields than for
gratings. Allman® confirmed that moving random dots are
the optimal stimulus for MT cells. Random dots are opti-
mal for the model units as well, since the model was derived
for such random textures.

9. SUMMARY

In this paper a model is presented for computing local image
velocity that is consonant with current views regarding the
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neurophysiology and psychophysics of motion perception.
The power spectrum of a moving texture occupies a tilted
plane in the spatiotemporal-frequency domain. The model
uses 3-D (space-time) Gabor filters to sample this power
spectrum and, by combining the outputs of several such
filters, the model estimates the slope of the plane (i.e., the
velocity of the moving texture). The output velocity is en-
coded as the peak in a distribution of velocity-tuned units
that behave much like cells of the MT area of the primate
brain.

The model appears to solve the aperture problem as well
as that of the human visual system, since it extracts the
correct velocity for patterns having large differences in con-
trast at different spatial orientations (>32:1 contrast ratio
for some patterns). It is capable of recognizing when there
is an ambiguous velocity estimate resulting from the motion
of a strongly oriented pattern (such as a grating), and in such
cases it chooses the normal-flow velocity. In addition, the
model may be used to simulate psychophysical data on the
coherence of sine-grating plaid patterns.

The model gives accurate estimates of two-dimensional
velocity for a wide variety of test cases, including realistic
images, sequences generated from images of natural tex-
tures, and some sine-grating plaid patterns. The model may
prove to be an interesting framework for future research in
the psychophysics and neurophysiology of motion percep-
tion as well as in computer vision.

APPENDIX A: GABOR FILTERS FROM
SEPARABLE COMPONENTS

To convolve a two-dimensional image by a horizontally ori-
ented sine-phase Gabor filter, we may convolve each image
row by a one-dimensional sine-phase Gabor filter, then con-
volve each column of the resulting image by a one-dimen-
sional Gaussian. This appendix outlines a new technique
for building 3-D Gabor filters of any orientation and with
elliptical Gaussian windows of any aspect ratio from linear
combinations of separable filters by making use of the fol-
lowing trigonometric identities:

sin(w, +tw,x +w,y) = sin(w, t)eos(w, x)cos(w, y)
— sin(w, t)sin(w, x)sin(w, y)
+ cos(w,nL]sin(wxnx)cns(w_,.cry]

+ cos(w, t)cos(w, x)sin(w, ),
(A1)

cos(w, +w, X +w,y) = cos(w, t)cos(w, x)cos(w, v)
= cos(w, t Jsin(w, x)sin{w, y)
- sin{wtullsin(wl“x)cos(ww}'}

— sinlw, t)eos{w, x)sin(w, y). (A2)

Let G,(t, o1, w,,) be a one-dimensional sine-phase Gabor
function as given by Eq. (3), and let G.(¢, oy, wy,) be the
corresponding cosine-phase filter. Using Eq. (A1), the out-
put of an arbitrarily oriented 3D (space-time) sine-phase
Gabor filter may be computed by doing the following separa-
ble convolutions:
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1. Convolve the image sequence in time by G,(¢, a,, W),
next each image row by G.(x, oy, w,,), and then each column
by Gc(yy Ty myn]'

2. Convolve the image sequence in time by G,(¢, a, @yy),
next each image row by G(x, oy, w.,), and then each column
by G.(y, ay, wy,).

3. Convolve the image sequence in time by G.(¢, &, W),
next each image row by G,(x, oy, wy,), and then each column
by G.(y, oy, wy,).

4. Convolve the image sequence in time by G.(¢, o, wy,),
next each image row by G.(x, o, wy,), and then each column
by G,(y, oy, wy,).

5. Bubtract the result of Step 2 from the sum of the
results of Steps 1, 3, and 4. Note that if o, oy, and o; are not
equal, the Gaussian window will be elliptical, but the axes of
the ellipsoid will always be parallel to the x, v, and ¢ axes.
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