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Abstract—Relations between anisotropic diffusion and robust
statistics are described in this paper. Specifically, we show that
anisotropic diffusion can be seen as a robust estimation procedure
that estimates a piecewise smooth image from a noisy input
image. The “edge-stopping” function in the anisotropic diffusion
equation is closely related to the error norm and influence
function in the robust estimation framework. This connection
leads to a new “edge-stopping” function based onTukey’s biweight
robust estimator that preserves sharper boundaries than previous
formulations and improves the automatic stopping of the diffu-
sion. The robust statistical interpretation also provides a means
for detecting the boundaries (edges) between the piecewise smooth
regions in an image that has been smoothed with anisotropic dif-
fusion. Additionally, we derive a relationship between anisotropic
diffusion and regularization with line processes. Adding con-
straints on the spatial organization of the line processes allows
us to develop new anisotropic diffusion equations that result in a
qualitative improvement in the continuity of edges.

Index Terms—Anisotropic diffusion, line processes, robust sta-
tistics.

I. INTRODUCTION

SINCE THE elegant formulation of anisotropic diffusion
introduced by Perona and Malik [38] (see [15] for very

early work in this topic), a considerable amount of research
has been devoted to the theoretical and practical understanding
of this and related methods for image enhancement. Re-
search in this area has been oriented toward understanding the
mathematical properties of anisotropic diffusion and related
variational formulations [4], [11], [25], [38], [50], developing
related well-posed and stable equations [2], [3], [11], [21],
[35], [40], [50], extending and modifying anisotropic diffusion
for fast and accurate implementations, modifying the diffusion
equations for specific applications [20], and studying the rela-
tions between anisotropic diffusion and other image processing
operations [41], [45].

In this paper, we develop a statistical interpretation of
anisotropic diffusion, specifically, from the point of view of
robust statistics. We show that the Perona–Malik [38] diffusion
equation is equivalent to a robust procedure that estimates
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a piecewise constant image from a noisy input image. The
“edge-stopping” function in the anisotropic diffusion equation
is closely related to the error norm and influence function in the
robust estimation framework. We exploit this robust statistical
interpretation of anisotropic diffusion to choose alternative
robust error norms, and hence, alternative “edge-stopping”
functions. In particular, we propose a new “edge-stopping”
function based onTukey’s biweightrobust error norm, which
preserves sharper boundaries than previous formulations and
improves the automatic stopping of the diffusion.

The robust statistical interpretation also provides a means
for detecting the boundaries (edges) between the piecewise
constant regions in an image that has been smoothed with
anisotropic diffusion. The boundaries between the piecewise
constant regions are considered to be “outliers” in the robust
estimation framework. Edges in a smoothed image are, there-
fore, very simply detected as those points that are treated as
outliers.

We also show (following [6]) that, for a particular class
of robust error norms, anisotropic diffusion is equivalent to
regularization with an explicit line process. The advantage of
the line-process formulation is that we can add constraints
on the spatial organization of the edges. We demonstrate that
adding such constraints to the Perona–Malik diffusion equation
results in a qualitative improvement in the continuity of edges.

II. BACKGROUND

A. Anisotropic Diffusion: Perona–Malik Formulation

Diffusion algorithms remove noise from an image by mod-
ifying the image via a partial differential equation (PDE). For
example, consider applying the isotropic diffusion equation
(the heat equation) given by div , using
the original (degraded/noisy) image as the initial
condition, where is an image in the
continuous domain, specifies spatial position, is an
artificial time parameter, and where is the image gradient.
Modifying the image according to this isotropic diffusion
equation is equivalent to filtering the image with a Gaussian
filter.

Perona and Malik [38] replaced the classical isotropic
diffusion equation with

div (1)

where is the gradient magnitude, and is an
“edge-stopping” function. This function is chosen to satisfy
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when so that the diffusion is “stopped”
across edges.

As mentioned in the Introduction, (1) motivated a large
number of researchers to study the mathematical properties of
this type of equation, as well as its numerical implementation
and adaptation to specific applications. The stability of the
equation was the particular concern of extensive research, e.g.,
[3], [11], [25], [38], [50]. In this paper, we present equations
that are modifications of (1); we do not discuss the stability
of these modified equations because the stability results can
be obtained from the mentioned references. Briefly, however,
we should point out that stability problems will typically be
solved, or at least moderated, by the spatial regularization
and temporal delays introduced by the numerical methods for
computing the gradient in [11], [25], [37].

B. Perona–Malik Discrete Formulation

Perona and Malik discretized their anisotropic diffusion
equation as follows:

(2)

where is a discretely sampled image,denotes the pixel
position in a discrete, two-dimensional (2-D) grid, andnow
denotes discrete time steps (iterations). The constant
is a scalar that determines the rate of diffusion,represents
the spatial neighborhood of pixel, and is the number
of neighbors (usually four, except at the image boundaries).
Perona and Malik linearly approximated the image gradient
(magnitude) in a particular direction as

(3)

Fig. 8 shows examples of applying this equation to an
image, using two different choices for the edge-stopping
function, . Qualitatively, the effect of anisotropic diffusion
is to smooth the original image while preserving brightness
discontinuities. As we will see, the choice of can greatly
affect the extent to which discontinuities are preserved. Un-
derstanding this is one of the main goals of this paper.

C. A Statistical View

Our goal is to develop a statistical interpretation of the
Perona–Malik anisotropic diffusion equation. Toward that end,
we adopt an oversimplified statistical model of an image. In
particular, we assume that a given input image is a piecewise
constant function that has been corrupted by zero-mean Gauss-
ian noise with small variance. In [50], the authors presented
interesting theoretical (and practical) analysis of the behavior
of anisotropic diffusion for piecewise constant images. We will
return later to comment on their results.

Consider the image intensity differences, , between
pixel and its neighboring pixels . Within one of the
piecewise constant image regions, these neighbor differences
will be small, zero-mean, and normally distributed. Hence, an
optimal estimator for the “true” value of the image intensity

at pixel minimizes the square of the neighbor differences.

Fig. 1. Local neighborhood of pixels at a boundary (intensity discontinuity).

This is equivalent to choosing to be the mean of the
neighboring intensity values.

The neighbor differences will not be normally distributed,
however, for an image region that includes a boundary (inten-
sity discontinuity). Consider, for example, the image region
illustrated in Fig. 1. The intensity values of the neighbors
of pixel are drawn from two different populations, and in
estimating the “true” intensity value at we want to include
only those neighbors that belong to the same population. In
particular, the pixel labeled is on the wrong side of the
boundary so will skew the estimate of significantly.
With respect to our assumption of Gaussian noise within each
constant region, the neighbor difference can be viewed
as anoutlier because it does not conform to the statistical
assumptions.

D. Robust Estimation

The field of robust statistics [22], [24] is concerned with
estimation problems in which the data contains gross errors,
or outliers.

Many robust statistical techniques have been applied to
standard problems in computer vision [1], [32], [44]. There
are robust approaches for performing local image smoothing
[5], image reconstruction [17], [19], blur classification [13],
surface reconstruction [47], segmentation [31], pose estimation
[26], edge detection [28], structure from motion or stereo [48],
[49], optical flow estimation [7], [8], [43], and regularization
with line processes [6]. For further details see [22] or, for
a review of the applications of robust statistics in computer
vision, see [32].

The problem of estimating a piecewise constant (or smooth)
image from noisy data can also be posed using the tools of
robust statistics. We wish to find an imagethat satisfies the
following optimization criterion:

(4)

where is a robust error norm and is a “scale” parameter
that will be discussed further below. To minimize (4), the
intensity at each pixel must be “close” to those of its neighbors.
As we shall see, an appropriate choice of the-function allows
us to minimize the effect of the outliers, , at the
boundaries between piecewise constant image regions.

Equation (4) can be solved by gradient descent

(5)
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Fig. 2. Least-squares (quadratic) error norm.

Fig. 3. Lorentzian error norm.

where , and again denotes the iteration. The
update is carried out simultaneously at every pixel.

The specific choice of the robust error norm or-function in
(4) is critical. To analyze the behavior of a given-function,
we consider its derivative (denoted), which is proportional
to the influence function[22]. This function characterizes the
bias that a particular measurement has on the solution. For
example, the quadratic-function has a linear -function.

If the distribution of values in every neighborhood
is a zero-mean Gaussian, then provides an
optimal local estimate of . This least-squaresestimate of
is, however, very sensitive to outliers because the influence
function increases linearly and without bound (see Fig. 2).
For a quadratic , is assigned to be the mean of the
neighboring intensity values . When these values come from
different populations (across a boundary) the mean is not
representative of either population, and the image is blurred
too much. Hence, the quadratic gives outliers (large values of

) too much influence.
To increase robustness andreject outliers, the -function

must be more forgiving about outliers; that is, it should
increase less rapidly than . For example, consider the
following Lorentzianerror norm plotted in Fig. 3:

(6)

Examination of the -function reveals that, when the absolute
value of the gradient magnitude increases beyond a fixed
point determined by the scale parameter, its influence is
reduced. We refer to this as aredescendinginfluence function
[22].1 If a particular local difference, , has
a large magnitude then the value of will be small
and therefore that measurement will have little effect on the
update of in (5).

1Some authors reserve the termredescendingto describe functions for
which  (x) = 0 for jxj > r for some finite constantr but we will use
the term more generally.

III. ROBUST STATISTICS AND ANISOTROPICDIFFUSION

We now explore the relationship between robust statistics
and anisotropic diffusion by showing how to convert back
and forth between the formulations. Recall the continuous
anisotropic diffusion equation:

div (7)

The continuous form of the robust estimation problem in (4)
can be posed as:

(8)

where is the domain of the image and where we have
omitted for notational convenience. One way to minimize
(8) is via gradient descent using the calculus of variations (see
for example [21], [36], [38], and [50]), as follows:

div (9)

By defining

(10)

we obtain the straightforward relation between image recon-
struction via robust estimation (8) and image reconstruction
via anisotropic diffusion (7). Youet al. [50] show and make
extensive use of this important relation in their analysis (we
will comment on their results later in this paper).

The same relationship holds for the discrete formulation;
compare (2) and (5) with . Note that
additional terms will appear in the gradient descent equation
if the magnitude of the image gradient is discretized in a
nonlinear fashion. In the remainder of this paper we proceed
with the discrete formulation as given in previous section. The
basic results we present hold for the continuous domain as
well.

Perona and Malik suggested two different edge stopping
functions in their anisotropic diffusion equation. Each of

these can be viewed in the robust statistical framework by
converting the functions into the related-functions.

Perona and Malik first suggested

(11)

for a positive constant . We want to find a -function such
that the iterative solution of the diffusion equation and the
robust statistical equation are equivalent. Letting ,
we have

(12)

where . Integrating with respect to
gives

(13)
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Fig. 4. Lorentzian error norm and the Perona–Malikg stopping function.

Fig. 5. Tukey’s biweight.

Fig. 6. Huber’s minmax estimator (modification of theL1 norm).

This function is proportional to the Lorentzian error norm
introduced in the previous section, and
is proportional to the influence function of the error norm;
see Fig. 4. Iteratively solving (5) with a Lorentzian foris,
therefore, equivalent to the discrete Perona–Malik formulation
of anisotropic diffusion. This relation was previously pointed
out in [50] (see also [6] and [36]).

The same treatment can be used to recover a-function for
the other -function proposed by Perona and Malik

(14)

The resulting -function is related to the robust error norm
proposed by Leclerc [27]. The derivation is straightforward
and is omitted here.

IV. EXPLOITING THE RELATIONSHIP

The above derivations demonstrate that anisotropic diffusion
is the gradient descent of an estimation problem with a familiar
robust error norm. What’s the advantage of knowing this
connection? We argue that the robust statistical interpretation
gives us a broader context within which to evaluate, compare,
and choose between alternative diffusion equations. It also
provides tools for automatically determining what should be
considered an outlier (an “edge”). In this section, we illustrate
these connections with an example.

While the Lorentzian is more robust than the (quadratic)
norm, its influence does not descend all the way to zero. We

can choose a more “robust” norm from the robust statistics
literature which does descend to zero. The Tukey’s biweight,
for example, is plotted along with its influence function in
Fig. 5:

,

otherwise
(15)

,

otherwise
(16)

,

otherwise.
(17)

Another error norm from the robust statistics literature,
Huber’sminimaxnorm [24] (see also [40] and [50]), is plotted
along with its influence function in Fig. 6. Huber’s minmax
norm is equivalent to the norm for large values. But, for
normally distributed data, the norm produces estimates
with higher variance than the optimal (quadratic) norm, so
Huber’s minmax norm is designed to be quadratic for small
values, as follows:

,
,

(18)

,
sign ,

(19)

sign .
(20)
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(a) (b)

Fig. 7. Lorentzian, Tukey, and Huber -functions: (a) values of� chosen as a function of�e so that outlier “rejection” begins at the same value for
each function; (b) the functions aligned and scaled.

We would like to compare the influence (-function) of
these three norms, but a direct comparison requires that we
dilate and scale the functions to make them as similar as
possible.

First, we need to determine how large the image gradient
can be before we consider it to be an outlier. We appeal
to tools from robust statistics to automatically estimate the
“robust scale,” , of the image as [39]

MAD

median median (21)

where “MAD” denotes the median absolute deviation and the
constant is derived from the fact that the MAD of a zero-mean
normal distribution with unit variance is 0.6745 1/1.4826.
For a discrete image, the robust scale,, is computed using
the gradient magnitude approximation introduced before.

Finally, Fig. 10 illustrates the behavior of the two functions
in the limit (shown for 500 iterations). The Perona–Malik
formulation continues to smooth the image while the Tukey
version has effectively “stopped.”

Second, we choose values for the scale parametersto
dilate each of the three influence functions so that they begin
rejecting outliers at the same value:. The point where the
influence of outliers first begins to decrease occurs when the
derivative of the -function is zero. For the modified norm
this occurs at . For the Lorentzian norm it occurs at

and for the Tukey norm it occurs at .
Defining with respect to in this way we plot the influence
functions for a range of values ofin Fig. 7(a). Note how each
function now begins reducing the influence of measurements
at the same point.

Third, we scale the three influence functions so that they
return values in the same range. To do this we takein (2)
to be one over the value of . The scaled -functions
are plotted in Fig. 7(b).

Now we can compare the three error norms directly. The
modified norm gives all outliers a constant weight of
one while the Tukey norm giveszero weight to outliers
whose magnitude is above a certain value. The Lorentzian (or
Perona–Malik) norm is in between the other two. Based on the
shape of we would correctly predict that diffusing with the
Tukey norm produces sharper boundaries than diffusing with
the Lorentzian (standard Perona–Malik) norm, and that both
produce sharper boundaries than the modifiednorm. We
can also see how the choice of function affects the “stopping”

behavior of the diffusion; given a piecewise constant image
where all discontinuities are above a threshold, the Tukey
function will leave the image unchanged whereas the other
two functions will not.

These predictions are born out experimentally, as can be
seen in Fig. 8. The figure compares the results of diffusing
with the Lorentzian function and the Tukey function.
The value of was estimated automatically using
(21) and the values of and for each function were defined
with respect to as described above. The figure shows the
diffused image after 100 iterations of each method. Observe
how the Tukey function results in sharper discontinuities.

We can detect edges in the smoothed images very simply by
detecting those points that are treated as outliers by the given
-function. Fig. 9 shows the outliers (edge points) in each of

the images, where .
These examples illustrate how ideas from robust statistics

can be used to evaluate and compare different-functions
and how new functions can be chosen in a principled way.
See [6] for other robust-functions which could be used for
anisotropic diffusion. See also [16] for related work connecting
anisotropic diffusion, the mean-field-function, and binary
line processes.

It is interesting to note that common robust error norms have
frequently been proposed in the literature without mentioning
the motivation from robust statistics. For example, Rudinet
al. [40] proposed a formulation that is equivalent to using the

norm. You et al. [50] explored a variety of anisotropic
diffusion equations and reported better results for some than
for others. In addition to their own explanation for this, their
results are predicted, following the development presented
here, by the robustness of the various error norms they use.
Moreover, some of their theoretical results, e.g., Theorems 1
and 3, are easily interpreted based on the concept of influence
functions. Finally, Mead and colleagues [23], [30] have used
analog VLSI (aVLSI) technology to build hardware devices
that perform regularization. The aVLSI circuits behave much
like a resistive grid, except that the resistors are replaced with
“robust” resistors made up of several transistors. Each such
resistive grid circuit is equivalent to using a different robust
error norm.

V. ROBUST ESTIMATION AND LINE PROCESSES

This section derives the relationship between anisotropic
diffusion and regularization with line processes. The connec-
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Fig. 8. Comparison of the Perona–Malik (Lorentzian) function (left) and the Tukey function (right) after 100 iterations. Top: original image. Middle:
diffused images. Bottom: magnified regions of diffused images.

tion between robust statistics and line processes has been
explored elsewhere; see [6] for details and examples as well as
[9], [12], [16], [18], and [19] for recent related results. While
we work with the discrete formulation here, it is easy to verify
that the connections hold for the continuous formulation as
well.

Recall that the robust formulation of the smoothing problem
was posed as the minimization of

(22)

where

(23)

There is an alternative, equivalent, formulation of this problem
that makes use of an explicitline processin the minimization:

(24)
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Fig. 9. Comparison of edges (outliers) for the Perona–Malik (Lorentzian) function (left) and the Tukey function (right) after 100 iterations. Bottom
row shows a magnified region.

where

(25)

and where are analog line processes
[16], [17]. The line process indicates the presence (close to
zero) or absence (close to 1) of discontinuities oroutliers.
The last term, , penalizes the introduction of line
processes between pixelsand . This penalty term goes to
zero when and is large (usually approaching one)
when .

One benefit of the line-process approach is that the “out-
liers” are made explicit and therefore can be manipulated. For
example, as we will see in Section V-A, we can add constraints
on these variables which encourage specific types of spatial
organizations of the line processes.

Numerous authors have shown how to convert a line-process
formulation into the robust formulation with a-function by
minimizing over the line variables [9], [16], [18]. That is

where

For our purposes here, it is more interesting to consider the
other direction: Can we convert a robust estimation problem
into an equivalent line-process problem? We have already
shown how to convert a diffusion problem with a function
into a robust estimation problem. If we can make the connec-
tion between robust-functions and line processes then we will
be able to take a diffusion formulation like the Perona–Malik
equation and construct an equivalent line process formulation.

Then, our goal is to take a function and construct a
new function, , such that the solution at
the minimum is unchanged. Clearly the penalty term will
have to depend in some way on . By taking derivatives
with respect to and , it can be shown that the condition
on for the two minimization problems to be equivalent
is given by

By integrating this equation, we obtain the desired line process
penalty function . See [6] for details on the explicit
computation of this integral. There are a number of conditions
on the form of that must be satisfied in order to recover the
line process, but as described in [6], these conditions do in
fact hold for many of the redescending-functions of interest.
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Fig. 10. Comparison of the Perona–Malik (Lorentzian) function (left) and the Tukey function (right) after 500 iterations.

Fig. 11. Lorentzian (Perona–Malik) penalty function,P (l), 0 � l � 1.

Fig. 12. Cliques for spatial interaction constraints (up to rotation) at site
s. The circles indicate pixel locations and the bars indicate discontinuities
between pixels. TheChyst cliques are used for hysteresis and theCsupp

cliques are used for nonmaxima suppression.

In the case of the Lorentzian norm, it can be shown that
; see Fig. 11. Hence, the equivalent

line-process formulation of the Perona–Malik equation is

(26)

Differentiating with respect to and gives the following
iterative equations for minimizing :

(27)

(28)

Note that these equations are equivalent to the discrete Per-
ona–Malik diffusion equations. In particular, is precisely
equal to .

A. Spatial Organization of Outliers

One advantage of the connection between anisotropic dif-
fusion and line processes, obtained through the connection
of both techniques to robust statistics, is the possibility of
improving anisotropic flows by the explicit design of line
processes with spatial coherence. In the classical Perona–Malik
flow, which relies on the Lorentzian error norm, there is no
spatial coherence imposed on the detected outliers; see Fig. 9.
Since the outlier process is explicit in the formulation of the
line processing (25), we can add additional constraints on its
spatial organization. While numerous authors have proposed
spatial coherence constraints for discrete line processes [14],
[17], [18], [33], we need to generalize these results to the case
of analog line processes [6].



BLACK et al.: ROBUST ANISOTROPIC DIFFUSION 429

Fig. 13. Anisotropic diffusion with spatial organization of outliers. Left: input image. Middle: line process for Perona–Malik (bottom: thresholded). Right:
Perona–Malik line process with spatial coherence (bottom: thresholded).

We consider two kinds of interaction terms,hysteresis
[10] andnonmaximum suppression[34]. Other common types
of interactions (for example, corners) can be modeled in a
similar way. The hysteresis term assists in the formation of
unbroken contours while the nonmaximum suppression term
inhibits multiple responses to a single edge present in the data.
Hysteresis lowers the penalty for creating extended edges and
nonmaximum suppression increases the penalty for creating
edges that are more that one pixel wide.

We consider a very simple neighborhood system as illus-
trated in Fig. 12. We define a new term that penalizes the
configurations on the right of the figure and rewards those on
the left. This term, , encodes our prior assumptions about
the organization of spatial discontinuities as shown in (29), at
the bottom of the page, where the parametersand assume
values in the interval [0, 1] and controls the importance of
the spatial interaction term. These parameters were chosen by
hand to compute the results reported in this paper.

Starting with the Lorentzian norm, the new error term with
constraints on the line processes becomes

(30)

where

Differentiating this equation with respect toand gives the

following update equations:

(31)

(32)

Without the additional spatial constraints, the line process
formulation was identical to the original Perona–Malik formu-
lation. In contrast, note here that the value of the line process
is dependent on neighboring values.

To see the effect of spatial constraints on the interpretation
of discontinuities, consider the simple example in Fig. 13. The
original image is shown on the left. The next column shows
values of the line process for the standard Perona–Malik dif-
fusion equation, i.e., without the additional spatial coherence
constraint. The value of the line process at each point is taken
to be the product, , of the horizontal and vertical line
processes. Dark values correspond to likely discontinuities.
The bottom image in the column shows a thresholded version
of the top image. Note how the line process is “diffuse” and
how the anomalous pixels on the edges of the square produce
distortions in the line process.

The column on the right of Fig. 13 shows the results when
spatial coherence constraints are added. Note how the line
process is no longer affected by the anomalous pixels; these
are ignored in favor of a straight edge. Note also the hashed,
or gridlike, pattern present in the image at the top right.
This pattern reflects the simple notion of spatial coherence

(29)
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Fig. 14. Anisotropic diffusion with spatially coherent outliers. Left: smoothed image. Right: value of the line process at each point taken to be the
product, ls; hls; v , of the horizontal and vertical line process ats.

Fig. 15. Left: Edges obtained with Perona–Malik. Right: Perona–Malik with additional spatial coherence in the line processes. Lower images show
details on the gondola.

embodied in that encourages horizontal and vertical edges
and discourages edges that are more than one pixel wide.

Fig. 14 shows the result of applying the spatial coherence
constraints on a real image (see top of Fig. 8 for the input).
The image on the left of Fig. 14 is the result of the diffusion

while the image on the right shows the line process values
(note the gridlike structure appears here as well).

Fig. 15 compares edges obtained from the standard Per-
ona–Malik diffusion equation with those obtained by adding
the spatial coherence constraints. Recall that we interpret edges
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to be gradient outliers where . This is equivalent
to defining outliers as locations,, at which the line process,

, is less than the value of the line process when
. Notice that we obtain more coherent edges by

adding the spatial coherence constraints.
The line process formulation is more general than the

standard anisotropic diffusion equation. Here we have shown
only some simple examples of how spatial coherence can
be added to diffusion. More sophisticated spatial coherence
constraints could be designed to act over larger neighborhoods
and/or to encourage edges at a greater variety of orientations

VI. V ECTOR-VALUED IMAGES

The extension of the results presented above to vector-
valued images is straightforward following the framework
introduced in [42]. The basic idea is that the gradient direction

and the gradient magnitude are replaced by
concepts derived from the first fundamental form of the vector
image. The direction of maximal change (“the gradient
direction”) of the vector data is given by the eigenvector of this
fundamental form corresponding to the maximal eigenvalue

, and the value of the maximal change (“the gradient
magnitude”) is given by a function of both eigenvalues, that
is, . Note that , and depend on all the
components of the vector-valued image.

To extend the robust anisotropic diffusion approach to vector
data, we have a number of possibilities. The first possibility,
[42], is to formulate the problem as the minimization of

selecting to be the Tukey’s robust function. The gradient
descent of this variational problem will give a system of
coupled anisotropic diffusion equations. A second option if
to derive directly the anisotropic equation and evolve each
one of the image components according to

div

where is the Tukey’s influence function. In addition, we
can introduce spatial organization of outliers, with information
from all the channels. Examples for color and texture data will
be reported elsewhere.

VII. CONCLUDING REMARKS

In this paper, we have shown connections between three
popular techniques for image reconstruction: anisotropic dif-
fusion, robust statistics, and regularization with line processes.
The relations were obtained via simple algebraic operations.
These connections make it possible to analyze, design, im-
plement, and interpret anisotropic diffusion using the tools of
robust statistics. These connections also make it possible to add
spatial coherence to anisotropic diffusion using line processes.

We have demonstrated the practical benefits of this con-
nection by showing how the theory of influence functions
can be used to chose “edge-stopping” functions that are more
“robust”. In particular, we proposed a new “edge-stopping”

function based on Tukey’s biweight robust estimator that
preserves sharper boundaries than previous formulations and
improves the automatic stopping of the diffusion. The robust
statistical interpretation also provides a means for detecting
the boundaries (edges) between the piecewise constant image
regions, and for selecting the “scale” parameter of the “edge-
stopping” functions automatically. Finally, we demonstrated
that adding simple spatial coherence constraints edges can
improve the continuity of the recovered edges.

A number of related issues remain to be investigated:

1) extending our techniques to vector-valued images;
2) investigating further spatial coherence constraints and

their relationship to the robust statistics framework, both
from a theoretical and practical viewpoint;

3) connecting formally the results on stability of anisotropic
diffusion equations to the theory of influence functions;

4) extending the rationale for applying robust statistics to
anisotropic diffusion from the case of piecewise-constant
images to more general ones.
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