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Robust Anisotropic Diffusion

Michael J. Black,Member, IEEE,Guillermo Sapiro,Member, IEEE,
David H. Marimont,Member, IEEE,and David Heeger

Abstract—Relations between anisotropic diffusion and robust a piecewise constant image from a noisy input image. The
statistics are described in this paper. Specifically, we show that “edge-stopping” function in the anisotropic diffusion equation
anisotropic diffusion can be seen as a robust estimation procedure jq ¢|osely related to the error norm and influence function in the
that estimates a piecewise smooth image from a noisy input . . L _
image. The “edge-stopping” function in the anisotropic diffusion _robust estl_mat|on frgmework. We e?<pI0|t this robust stausnpal
equation is closely related to the error norm and influence interpretation of anisotropic diffusion to choose alternative
function in the robust estimation framework. This connection robust error norms, and hence, alternative “edge-stopping
leads to a new “edge-stopping” function based ofiukey's biweight  functions. In particular, we propose a new “edge-stopping”
robust estimator that preserves sharper boundaries than previous function based ofukey’s biweightobust error norm, which

formulations and improves the automatic stopping of the diffu- h b daries th . f lati d
sion. The robust statistical interpretation also provides a means preserves sharper boundaries than previous formulations an

for detecting the boundaries (edges) between the piecewise smootimproves the automatic stopping of the diffusion.
regions in an image that has been smoothed with anisotropic dif-  The robust statistical interpretation also provides a means
fusion. Additionally, we derive a relationship between anisotropic for detecting the boundaries (edges) between the piecewise
diffusion and regularization with line processes. Adding con- cqnstant regions in an image that has been smoothed with
straints on the spatial organization of the line processes allows _ . S . . . .
us to develop new anisotropic diffusion equations that result in a anisotropic d}ﬁu5|0ﬂ. The .boundarles betwgen the piecewise
qualitative improvement in the continuity of edges. constant regions are considered to be “outliers” in the robust
estimation framework. Edges in a smoothed image are, there-
fore, very simply detected as those points that are treated as
outliers.

We also show (following [6]) that, for a particular class
l. INTRODUCTION of robust error norms, anisotropic diffusion is equivalent to

NCE THE e|egant formulation of anisotropic diﬁusionregularization with an eXpIiCit line process. The advantage of
ntroduced by Perona and Malik [38] (see [15] for veryhe line-process formulation is that we can add constraints
early work in this topic), a considerable amount of researé the spatial organization of the edges. We demonstrate that
has been devoted to the theoretical and practical understandiflging such constraints to the Perona—Malik diffusion equation
of this and related methods for image enhancement. H@sults in a qualitative improvement in the continuity of edges.
search in this area has been oriented toward understanding the
mathematical properties of anisotropic diffusion and related I
variational formulations [4], [11], [25], [38], [50], developing
related well-posed and stable equations [2], [3], [11], [21], ) o , )
[35], [40], [50], extending and modifying anisotropic diffusion’™ Anisotropic Diffusion: Perona—Malik Formulation
for fast and accurate implementations, modifying the diffusion Diffusion algorithms remove noise from an image by mod-
equations for specific applications [20], and studying the reldying the image via a partial differential equation (PDE). For
tions between anisotropic diffusion and other image processiegample, consider applying the isotropic diffusion equation
operations [41], [45]. (the heat equation) given yI(z, y, t)/0t = div(VI), using
In this paper, we develop a statistical interpretation dfe original (degraded/noisy) imagéz, y, 0) as the initial
anisotropic diffusion, specifically, from the point of view ofcondition, wherel(z, 3, 0): IR? — IR is an image in the
robust statistics. We show that the Perona—Malik [38] diffusiccontinuous domain(z, i) specifies spatial positiort, is an
equation is equivalent to a robust procedure that estimatetificial time parameter, and wheRe!/ is the image gradient.
Modifying the image according to this isotropic diffusion
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g(z) — 0 whenz — oo so that the diffusion is “stopped”
across edges.

As mentioned in the Introduction, (1) motivated a large
number of researchers to study the mathematical properties of
this type of equation, as well as its numerical implementation
and adaptation to specific applications. The stability of the
equation was the particular concern of extensive research, e.g.,
[3], [11], [25], [38], [50]. In this paper, we present equationsig. 1. Local neighborhood of pixels at a boundary (intensity discontinuity).
that are modifications of (1); we do not discuss the stability
of these modified equations because the stability results cgn

be obtained from the mentioned references. Briefly, however 'S 1S ngyalent_ to choosing;, to be the mean of the
neighboring intensity values.

we should point out that stability problems will typically be The neighbor differences will not be normally distributed,

solved, or at least moderated, by the spatial regularizatipn . : . . )
and temporal delays introduced by the numerical methods ﬁowever, for an image region that includes a boundary (inten

0
computing the gradient ig(||VI||) [11], [25], [37].

S|{y discontinuity). Consider, for example, the image region
illustrated in Fig. 1. The intensity values of the neighbors
of pixel s are drawn from two different populations, and in
estimating the “true” intensity value atwe want to include
Perona and Malik discretized their anisotropic diffusionnly those neighbors that belong to the same population. In

B. Perona—Malik Discrete Formulation

equation as follows: particular, the pixel labeleg is on the wrong side of the
\ boundary soi, will skew the estimate ofl, significantly.
It=r4 = Z g(VI, VI, (2) With respect to our assumption of Gaussian noise within each
7| PENs constant region, the neighbor differentg- I, can be viewed

L ) ] _as anoutlier because it does not conform to the statistical
where I! is a discretely sampled image,denotes the pixel assumptions.

position in a discrete, two-dimensional (2-D) grid, ahdow
denotes discrete time steps (iterations). The constaniR™*
is a scalar that determines the rate of diffusignrepresents
the spatial neighborhood of pixel and |7,| is the number The field of robust statistics [22], [24] is concerned with
of neighbors (usually four, except at the image boundarie§gtimation problems in which the data contains gross errors,
Perona and Malik linearly approximated the image gradieft outliers.

D. Robust Estimation

(magnitude) in a particular direction as Many robust statistical techniques have been applied to
standard problems in computer vision [1], [32], [44]. There
Vi,=I,~I, pens. (3) are robust approaches for performing local image smoothing

i ) . _ [5], image reconstruction [17], [19], blur classification [13],
_ Fig. 8 shows examples of applying this equation 10 &l tace reconstruction [47], segmentation [31], pose estimation
image, using two different choices for the edge-stoppingg) edge detection [28], structure from motion or stereo [48],
function, g(-). Qualitatively, the effect of anisotropic dlf'fUSIon[49], optical flow estimation [7], [8], [43], and regularization
is to smooth the original image while preserving brightnesg, jine processes [6]. For further details see [22] or, for

discontinuities. As we will see, the choice gf-) can greatly 5 review of the applications of robust statistics in computer
affect the extent to which discontinuities are preserved. Udwion see [32].

derstanding this is one of the main goals of this paper. The problem of estimating a piecewise constant (or smooth)

image from noisy data can also be posed using the tools of

C. A Statistical View robust statistics. We wish to find an imagehat satisfies the
Our goal is to develop a statistical interpretation of théollowing optimization criterion:

Perona—Malik anisotropic diffusion equation. Toward that end,
we adopt an oversimplified statistical model of an image. In min Z Z p(dp = Is, o) 4)
particular, we assume that a given input image is a piecewise s€l pEns
constant function that has been corrupted by zero-mean Gauss- . L "
ian noise with small variance. In [50], the authors presentwerep(') IS a.robust error norm andis a sca}le_ parameter
interesting theoretical (and practical) analysis of the behaviTtS]""t will be discussed further below. To minimize (4), the

of anisotropic diffusion for piecewise constant images. We wiffteSity at éach pixel must be “close” to those of its neighbors.

return later to comment on their results. As we shall see, an appropriate choice of gheinction allows

Consider the image intensity differencdg,— I,, between us to minimize the effect of the outlier$_1p — L), at the
pixel s and its neighboring pixely. Within one of the boundaries between piecewise constant image regions.

piecewise constant image regions, these neighbor differenceduation (4) can be solved by gradient descent

will be small, zero-mean, and normally distributed. Hence, an o , A ,
optimal estimator for the “true” value of the image intensity LW =1+ |75 | Z P(lp =I5, 0) (5)
1 at pixel s minimizes the square of the neighbor differences. 1 pens
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We now explore the relationship between robust statistics
and anisotropic diffusion by showing how to convert back
and forth between the formulations. Recall the continuous
anisotropic diffusion equation:

l I1l. ROBUST STATISTICS AND ANISOTROPIC DIFFUSION

ol(x,y,t .
p(z,0) ¥(z,0) 1) _ (vl va) @
Fig. 2. Least-squares (quadratic) error norm. The continuous form of the robust estimation problem in (4)

can be posed as:

N win | (19112 ®
o 7 Q
—_ 1 where 2 is the domain of the image and where we have
'l omitted & for notational convenience. One way to minimize
(8) is via gradient descent using the calculus of variations (see

p(x, 0) w(x, U) for example [21], [36], [38], and [50]), as follows:

ol(x,y,t) \4

st — g (V1) o | ©

Fig. 3. Lorentzian error norm.

where(-) = p/(-), and¢ again denotes the iteration. TheBy defining
update is carried out simultaneously at every pixel . p(x)

The specific choice of the robust error normpeiunction in 9(z) = z (10)
(4) is crlgcal._To an.alyz_e the behavior O.f a _g|vp|=funct.|on, we obtain the straightforward relation between image recon-
we consider its derivative (denoteg, which is proportional

. . . : . struction via robust estimation (8) and image reconstruction
to theinfluence functiorj22]. This function characterizes the_. . e (8) 9
. ) ; ia anisotropic diffusion (7). Yowet al. [50] show and make
bias that a particular measurement has on the solution. P

or . S U : .
example, the quadratie-function has a lineap-function. extensive use of this important relation in their analysis (we
If the distribution of valueg§i, — I?) in every neighborhood

will comment on their results later in this paper).
is a zero-mean Gaussian, thefw, o) = 2%/0? provides an

The same relationship holds for the discrete formulation;
. . ;i : 2 it = p'(z) = . N h

optimal local estimate of?. This least-squaregstimate off! compare (2) and (5) with(z) = p(z) = g(x) z. Note that

is, however, very sensitive to outliers because the influen

additional terms will appear in the gradient descent equation
function increases linearly and without bound (see Fig.

Cthe magnitude of the image gradient is discretized in a
For a quadraticp, I**! is assigned to be the mean of the

onlinear fashion. In the remainder of this paper we proceed

. L ; with the discrete formulation as given in previous section. The
neighboring intensity valuek,. When these values come from__ _. . .

) . . basic results we present hold for the continuous domain as
different populations (across a boundary) the mean is no

representative of either population, and the image is blurre
too much. Hence, the quadratic gives outliers (large values
|V, p|) too muchinfluence

To increase robustness ameject outliers, the p-function
must be more forgiving about outliers; that is, it shoul
increase less rapidly tham?. For example, consider the

1Perona and Malik suggested two different edge stopping
g(i-) functions in their anisotropic diffusion equation. Each of
these can be viewed in the robust statistical framework by
8onverting they(-) functions into the related-functions.
Perona and Malik first suggested

. . . . . 1
following Lorentzianerror norm plotted in Fig. 3: g(x) = — (11)
1 rz\2 2 1+—=
= " - — = 5 K2
oz, o) =log [1 + 5 (0) }, P(z, o) %02 1 22 (6)

for a positive constank’. We want to find ap-function such

Examination of thej-function reveals that, when the absolutéhat the iterative solution of the diffusion equation and the
value of the gradient magnitude increases beyond a fixE¥pust statistical equation are equivalent. Lettii§ = 202,
point determined by the scale parameterits influence is We have

reduced. We refer to this asradescendingnfluence function (2)z = 2¢ W(z, o) (12)
[22].1 If a particular local differenceVi,,, = I, — I, has guEr = 22

a large magnitude then the value ¢fVI, ,) will be small 2+ o2

and therefore that measurement will have little effect on t
update ofI!+! in (5).

rQ/ﬁwerez/;(a:, o) = p'(z, o). Integratingg(x)x with respect to
x gives
1Some authors reserve the temedescendingo describe functions for

1/ z?
which #(z) = 0 for |z| > » for some finite constant but we will use /g(a:)a: dz = o? log {1 + = <—2>} = p(z). (13)
the term more generally. 2\ o
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oz) 9()z = (2) @)

Fig. 4. Lorentzian error norm and the Perona—Malilstopping function.

9(0)z = () )

Fig. 5. Tukey's biweight.

LN

@ @e=vE o)

Fig. 6. Huber's minmax estimator (modification of tdg norm).

This functionp(x) is proportional to the Lorentzian error normcan choose a more “robust” norm from the robust statistics
introduced in the previous section, agitk )z = p'(x) = ¢(x) literature which does descend to zero. The Tukey's biweight,
is proportional to the influence function of the error normfor example, is plotted along with its influence function in
see Fig. 4. Iteratively solving (5) with a Lorentzian foris, Fig. 5:

therefore, equivalent to the discrete Perona—Malik formulation 22 gt 4
of anisotropic diffusion. This relation was previously pointed — -+ lz|Lo,
. plz,0)=¢ 02 o* 306 (15)
out in [50] (see also [6] and [36]). ’ 1 therwi
The same treatment can be used to recovefftanction for 3’ otherwise
the otherg-function proposed by Perona and Malik W(z, o) :{37[1 —(z/o)] |z| <o, (16)
o) = (/K (14) 0, otherwise
( ) %[1 - (37/0)2]2 |$| <o, 17)
. S z,0)=
The resultingp-function is related to the robust error norm g 0, otherwise.

proposed by Leclerc [27]. The derivation is straightforward

: ) Another error norm from the robust statistics literature,
and is omitted here.

Huber'sminimaxnorm [24] (see also [40] and [50]), is plotted
along with its influence function in Fig. 6. Huber's minmax
IV. EXPLOITING THE RELATIONSHIP norm is equivalent to thé&; norm for large values. But, for
The above derivations demonstrate that anisotropic diffusigarmally distributed data, thé, norm produces estimates
is the gradient descent of an estimation problem with a famili#th higher variance than the optimah (quadratic) norm, so
robust error norm. What's the advantage of knowing thiguber's minmax norm is designed to be quadratic for small
connection? We argue that the robust statistical interpretatigdlues, as follows:

gives us a broader context within which to evaluate, compare, 2?/20 +0/2 |z| <o
e : p(z, 0) = > (18)
and choose between alternative diffusion equations. It also |z, lz| > o,
provides tools for automatically determining what should be <
. . ; f . . . _Jz/o, lz| < o, 19
considered an outlier (an “edge”). In this section, we illustrate Pz, o) =4 (29)
. . sign(z), |z| > o,
these connections with an example.
While the Lorentzian is more robust than the (quadratic) 9z, o) = { 1/o, |z| < o, (20)
norm, its influence does not descend all the way to zero. We sign(z)/z, |z| > 0.
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Huber Minimax

-GCs

Outliers

(@) (b)

Fig. 7. Lorentzian, Tukey, and Hube#f-functions: (a) values of chosen as a function of. so that outlier “rejection” begins at the same value for
each function; (b) the functions aligned and scaled.

We would like to compare the influence)-function) of behavior of the diffusion; given a piecewise constant image
these three norms, but a direct comparison requires that wkere all discontinuities are above a threshold, the Tukey
dilate and scale the functions to make them as similar asction will leave the image unchanged whereas the other
possible. two functions will not.

First, we need to determine how large the image gradientThese predictions are born out experimentally, as can be
can be before we consider it to be an outlier. We appesden in Fig. 8. The figure compares the results of diffusing
to tools from robust statistics to automatically estimate theith the Lorentziang(-) function and the Tukey function.
“robust scale,”s., of the image as [39] The value ofg, = 10.278 was estimated automatically using

21) and the values af and X for each function were defined
ge =1.4826 MAD(VI) \(Nittz respect too, as described above. The figure shows the
=1.4826 median[||VI — median(|[VI|})[[] (21) diffused image after 100 iterations of each method. Observe

where “MAD” denotes the median absolute deviation and tﬁ}eow the Tukey function results in sharper discontinuities.
We can detect edges in the smoothed images very simply by

constant is derived from the fact that the MAD ofazero—meaopt tina th ints that treated i by the i
normal distribution with unit variance is 0.6745 1/1.4826. etecting those points that are treated as outliers by he given

For a discrete image, the robust scate, is computed using p-function. Fig. 9 shows the outliers (edge points) in each of
the gradient magnitude approximation introduced before. the images, Wherwl&f" > O -

Finally, Fig. 10 illustrates the behavior of the two functions These examples illustrate how ideas fro_m robust .Stat'St'Cs
in the limit (shown for 500 iterations). The Perona—MaliK2" be used to evaluate and compare differgfiinctions

formulation continues to smooth the image while the Tukegpd hgvx; rrlevtvhfl;nrctéons fca;n t?en Cr\‘;ﬁieﬂ n alldpgn0|pleccji fvv?y.
version has effectively “stopped.” ee [6] for other robusp-functions ch could be used To

Second, we choose values for the scale parametets anisotropic diffusion. See also [16] for related work connecting

dilate each of the three influence functions so that they begﬁﬂISOtrOpIC diffusion, the mean-fielg-function, and binary

rejecting outliers at the same valug;. The point where the IN€ Processes.

influence of outliers first begins to decrease occurs when Welt is interesting to note that common robust error norms have

derivative of they-function is zero. For the modified; norm theeql:rle(;]ttil\yag(?ﬁnfrgﬁp%sbeuds’:nszggsltlitfsrat:(r)f \éV)I(?rzutlem;nJ;)izlng
this occurs atz. = ¢. For the Lorentzian norm it occurs at ) Pe,

o. = V20 and for the Tukey norm it occurs at — 0_/\/5. al. [40] proposed a formulation that is equivalent to using the

Deing wih respect 7. i 15 way we pt e nfuence Ly [0 04 8 ] S0 8 vret o ansonoe
functions for a range of values ofin Fig. 7(a). Note how each d P

function now begins reducing the influence of measuremerg?sr others. In ad(jltlon to thelr. own explanation for this, their
at the same point. results are predicted, following the development presented

Third, we scale the three influence functions so that th ;féo?/)érth:}o;?le)uosftrgﬁi ?r:etgrit\i/:arllorzzueltrsrorenom"llf]etgregmussi
return values in the same range. To do this we taka (2) ' ' €9,

. , and 3, are easily interpreted based on the concept of influence
;orebeplgggdmi/r?r':tge \7/?;[;6 af(., o). The scaled)-functions functions. Finally, Mead and colleagues [23], [30] have used

Now we can compare the thre ertor norms dircty. TS0 VL1 (@) teenoiogy 0 bld harduare deves
modified L; norm gives all outliers a constant weight o P 9 )

one while the Tukey norm givegero weight to outliers like a resistive grid, except that the resistors are replaced with

whose magnitude is above a certain value. The Lorentzian “E)?k.)u.St" registo_rs me_lde up of several Fransist_ors. Each such
Perona-Malik) norm is in between the other two. Based on tL%sstNe grid circuit is equivalent to using a different robust
shape of/(-) we would correctly predict that diffusing with the €110 norm.

Tukey norm produces sharper boundaries than diffusing with

the Lorentzian (standard Perona—Malik) norm, and that both

produce sharper boundaries than the modifiednorm. We This section derives the relationship between anisotropic
can also see how the choice of function affects the “stoppindiffusion and regularization with line processes. The connec-

V. ROBUST ESTIMATION AND LINE PROCESSES
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Fig. 8. Comparison of the Perona—Malik (Lorentzian) function (left) and the Tukey function (right) after 100 iterations. Top: original image: Middl
diffused images. Bottom: magnified regions of diffused images.

tion between robust statistics and line processes has bedrere

explored elsewhere; see [6] for details and examples as well as

[9], [12], [16], [18], and [19] for recent related results. While E(I,) = Z p(I, — 1, o). (23)

we work with the discrete formulation here, it is easy to verify

that the connections hold for the continuous formulation as

well. . . There is an alternative, equivalent, formulation of this problem
Recall that the robqs'g fqrmglaﬂon of the smoothing problemat makes use of an explidihe processn the minimization:

was posed as the minimization of

E(I)=)_ E(I) (22) E(I,) =) E(,]) (24)

PENS
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— 2R YWy

=

Fig. 9. Comparison of edges (outliers) for the Perona—Malik (Lorentzian) function (left) and the Tukey function (right) after 100 iteratioms. Botto
row shows a magnified region.

where For our purposes here, it is more interesting to consider the
1 other direction: Can we convert a robust estimation problem
E(l;, )= Z [F(Ip —IS)leyp—l—P(lS,p)} (25) into an equivalent line-process problem? We have already
shown how to convert a diffusion problem withy&) function
into a robust estimation problem. If we can make the connec-
tion between robusit-functions and line processes then we will
) L i be able to take a diffusion formulation like the Perona—Malik
Ztra]ro)lor absence (lose to 1)|. of d;}scqntmtcjjmes' ”“t:)elTs equation and construct an equivalent line process formulation.
The last term,P(lsjp)_, penalizesthe introduction of line Then, our goal is to take a functios(z) and construct a
processes between p|xe4_aandp. This penalty term goes 10 oy function,E(x, 1) = [#2]+ P(1)], such that the solution at
zero whenl,,, — 1 and is large (usually approaching one he minimum is unchanged. Clearly the penalty tePf) will

whenl; , — 0. : . S
% i . . . have to depend in some way @-). By taking derivatives
One benefit of the line-process approach is that the ‘o t'ith respect tox and!, it can be shown that the condition

liers” are made exp“C't gnd thgrefore can be manipulated. & P(1) for the two minimization problems to be equivalent
example, as we will see in Section V-A, we can add constrai Sgiven by

on these variables which encourage specific types of spatial
organizations of the line processes. W(z)
Numerous authors have shown how to convert a line-process —2t=P {—} .
formulation into the robust formulation with afunction by 2z
minimizing over the line variables [9], [16], [18]. That is

pPENS

and wherel, , € 1 are analog line process¢8 < [, , < 1)
[16], [17]. The line process indicates the presenceldse to

By integrating this equation, we obtain the desired line process
p(x) = min E(z, ), penalty functionP(l). See [6] for details on the explicit
osisl computation of this integral. There are a number of conditions
on the form ofp that must be satisfied in order to recover the
line process, but as described in [6], these conditions do in
E(z, 1) = [z°1 + P()]. fact hold for many of the redescendipgfunctions of interest.

where
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Fig. 10. Comparison of the Perona—Malik (Lorentzian) function (left) and the Tukey function (right) after 500 iterations.

Fig. 11. Lorentzian (Perona—Malik) penalty functid(l), 0 <1 < 1.

so | po
S0 | po | uo
uo | wo
Chyst Csupp

Differentiating with respect td, and! gives the following
iterative equations for minimizing(Z,, 1):

It =rt 4 Ini > 1pVE., (27)
81 pen,
[ 202
2P 202 viz,’
Note that these equations are equivalent to the discrete Per-
ona—Malik diffusion equations. In particuldl, , is precisely
equal tog(||V L p|)-

(28)

A. Spatial Organization of Outliers

One advantage of the connection between anisotropic dif-
fusion and line processes, obtained through the connection

Fig. 12. Cliques for spatial interaction constraints (up to rotation) at sif POth techniques to robust statistics, is the possibility of
s. The circles indicate pixel locations and the bars indicate discontinuitiémproving anisotropic flows by the explicit design of line

between pixels. The}, . cliques are used for hysteresis and the,
cliques are used for nonmaxima suppression.

processes with spatial coherence. In the classical Perona—Malik
flow, which relies on the Lorentzian error norm, there is no

In the case of the Lorentzian norm, it can be shown thapatial coherence imposed on the detected outliers; see Fig. 9.
P() = 1 —1-logl; see Fig. 11. Hence, the equivalen§ince the outlier process is explicit in the formulation of the

line-process formulation of the Perona—Malik equation is

1
E(l,1)=>" {@(Ip — L)% 415 p—1—1logls |-
pENs

(26)

line processing (25), we can add additional constraints on its
spatial organization. While numerous authors have proposed
spatial coherence constraints for discrete line processes [14],
[17], [18], [33], we need to generalize these results to the case
of analog line processes [6].
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o

Fig. 13. Anisotropic diffusion with spatial organization of outliers. Left: input image. Middle: line process for Perona—Malik (bottom: tle@sHright:
Perona—Malik line process with spatial coherence (bottom: thresholded).

We consider two kinds of interaction termfysteresis following update equations:
[10] andnonmaximum suppressi¢d4]. Other common types A
of interactions (for example, corners) can be modeled in QH =+ s Z ls,p Vs, p, (31)
similar way. The hysteresis term assists in the formation °I+1 pens
unbroken contours while the nonmaximum suppression termp =
inhibits multiple responses to a single edge present in the data. 202
Hysteresis lowers the penalty for creating extended edges and
nonmaximum suppression increases the penalty for creating2s2 |1 + ¢; Z 1-1.,)—e Z Q=) +Viz,
edges that are more that one pixel wide. Chyst Caupp

We consider a very simple neighborhood system as illus- (32)

trate_d In '_:'g' 12. We _deflne a new term that penalizes t%ithout the additional spatial constraints, the line process
conﬁgurauqns on the right of the f|gur(_a and rewarq:s those fBmulation was identical to the original Perona—Malik formu-
the left. This term,£;, encodes our prior assumptions aboykjon ‘|n contrast, note here that the value of the line process
the organization of spatial discontinuities as shown in (29), I%tdependent on neighboring values.

the bottom of the page, where the parametg@nde, assume 14 gee the effect of spatial constraints on the interpretation
values in the interval [0, 1] and controls the importance of uf giscontinuities, consider the simple example in Fig. 13. The
the spatial interaction term. These parameters were Choserbhﬁinal image is shown on the left. The next column shows

hand to compute the results reported in this paper. values of the line process for the standard Perona—Malik dif-

Starting with the Lorentzian norm, the new error term withsjon equation, i.e., without the additional spatial coherence

constraints on the line processes becomes constraint. The value of the line process at each point is taken
to be the product, I, ., of the horizontal and vertical line

E(I,1) = ZE(VIs,pv li.p) (30) processes. park vglues correspond to likely discontinuitigs.

- The bottom image in the column shows a thresholded version

of the top image. Note how the line process is “diffuse” and
how the anomalous pixels on the edges of the square produce

where distortions in the line process.
1 The column on the right of Fig. 13 shows the results when
ENI . 1 ) = 352 fo,pls,p +1l,,—1=logl, , spatial coherence constraints are added. Note how the line
d process is no longer affected by the anomalous pixels; these
+E1(ls,p)- are ignored in favor of a straight edge. Note also the hashed,

or gridlike, pattern present in the image at the top right.
Differentiating this equation with respect foand! gives the This pattern reflects the simple notion of spatial coherence

Er(ls,p) = a|—e1 Z (1=l p)(1 = lu,0) + €2 Z (T=ls,p)(1=1p,w) (29)
C

Chyst supp
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Fig. 14. Anisotropic diffusion with spatially coherent outliers. Left: smoothed image. Right: value of the line process at each point taken to be the
product, I, 4l ., Of the horizontal and vertical line process sat
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Fig. 15. Left: Edges obtained with Perona—Malik. Right: Perona—Malik with additional spatial coherence in the line processes. Lower images show
details on the gondola.

embodied inE’; that encourages horizontal and vertical edgesghile the image on the right shows the line process values
and discourages edges that are more than one pixel wide. (note the gridlike structure appears here as well).

Fig. 14 shows the result of applying the spatial coherenceFig. 15 compares edges obtained from the standard Per-
constraints on a real image (see top of Fig. 8 for the inpufna—Malik diffusion equation with those obtained by adding
The image on the left of Fig. 14 is the result of the diffusiotthe spatial coherence constraints. Recall that we interpret edges
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to be gradient outliers whel& I, ,| > o.. This is equivalent function based on Tukey's biweight robust estimator that
to defining outliers as locations, at which the line process, preserves sharper boundaries than previous formulations and
l(VI,,,, 0), is less than the value of the line process whemproves the automatic stopping of the diffusion. The robust
Vi, , = o.. Notice that we obtain more coherent edges bstatistical interpretation also provides a means for detecting
adding the spatial coherence constraints. the boundaries (edges) between the piecewise constant image
The line process formulation is more general than thregions, and for selecting the “scale” parameter of the “edge-
standard anisotropic diffusion equation. Here we have showtopping” functions automatically. Finally, we demonstrated
only some simple examples of how spatial coherence ctrat adding simple spatial coherence constraints edges can

be added to diffusion. More sophisticated spatial cohereniceprove the continuity of the recovered edges.
constraints could be designed to act over larger neighborhood# number of related issues remain to be investigated:
and/or to encourage edges at a greater variety of orientations)) extending our techniques to vector-valued images;

2) investigating further spatial coherence constraints and

VI. VECTORVALUED IMAGES

The extension of the results presented above to vector-
valued images is straightforward following the framework
introduced in [42]. The basic idea is that the gradient direction
VI/|IVI|| and the gradient magnitudgvI|| are replaced by
concepts derived from the first fundamental form of the vector
image. The direction of maximal change (“the gradient
direction”) of the vector data is given by the eigenvector of this
fundamental form corresponding to the maximal eigenvalue
As, and the value of the maximal change (“the gradient

their relationship to the robust statistics framework, both
from a theoretical and practical viewpoint;

3) connecting formally the results on stability of anisotropic

diffusion equations to the theory of influence functions;

4) extending the rationale for applying robust statistics to

anisotropic diffusion from the case of piecewise-constant
images to more general ones.
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components of the vector-valued image.

To extend the robust anisotropic diffusion approach to vector
data, we have a number of possibilities. The first possibility,
[42], is to formulate the problem as the minimization of

/ p(Ag, A_)dS

selectingp to be the Tukey’s robust function. The gradient
descent of this variational problem will give a system ofl4]
coupled anisotropic diffusion equations. A second option iLS
to derive directly the anisotropic equation and evolve eac

one of the image componenfs according to

)

o cos 64
= div |:”(/)()\+, )\_)<Sin o,
where 1y is the Tukey’s influence function. In addition, we [g]
can introduce spatial organization of outliers, with information
from all the channels. Examples for color and texture data willg)
be reported elsewhere.
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(6]

(7]

[10]
VII.

In this paper, we have shown connections between three
popular techniques for image reconstruction: anisotropic dif2]
fusion, robust statistics, and regularization with line processes.
The relations were obtained via simple algebraic operatiori$3]
These connections make it possible to analyze, design, im-
plement, and interpret anisotropic diffusion using the tools ¢fs
robust statistics. These connections also make it possible to add

CONCLUDING REMARKS [11]

spatial coherence to anisotropic diffusion using line processgss.
We have demonstrated the practical benefits of this cops]
nection by showing how the theory of influence function(f17
can be used to chose “edge-stopping” functions that are m re]
“robust”. In particular, we proposed a new “edge-stopping”
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