
Predicting the orientation of invisible stimuli from
activity in human primary visual cortex
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Humans can experience aftereffects from oriented stimuli that are not consciously perceived, suggesting that such stimuli

receive cortical processing. Determining the physiological substrate of such effects has proven elusive owing to the low

spatial resolution of conventional human neuroimaging techniques compared to the size of orientation columns in visual

cortex. Here we show that even at conventional resolutions it is possible to use fMRI to obtain a direct measure of orientation-

selective processing in V1. We found that many parts of V1 show subtle but reproducible biases to oriented stimuli, and that

we could accumulate this information across the whole of V1 using multivariate pattern recognition. Using this information,

we could then successfully predict which one of two oriented stimuli a participant was viewing, even when masking rendered

that stimulus invisible. Our findings show that conventional fMRI can be used to reveal feature-selective processing in human

cortex, even for invisible stimuli.

Orientation-selective aftereffects can result from exposure to grating
stimuli that are too fine to be consciously perceived, suggesting that
orientation-selective but unconscious activation of visual cortex is
possible1–3. However, direct physiological measurement of such uncon-
scious feature-selective processing in human V1 has proven elusive due
to the relatively low spatial resolution of functional neuroimaging
methods. Typically, human fMRI has a spatial resolution of a few
millimeters. However, in the primary visual cortex of primates, neurons
with different orientation preferences are systematically mapped in a
pinwheel pattern, with regions of similar orientation selectivity sepa-
rated by around 500 microns4,5. Thus, the topographic representation
of orientation selectivity is below the spatial resolution of functional
MRI, so direct comparison of activity evoked by differently oriented
stimuli is generally considered unrevealing. Indirect methods such as
prolonged selective adaptation6 can be used to assess orientation
processing in human V1, but such effects are generally weak7 and
rely on prolonged exposure to adapting stimuli.

Most functional neuroimaging studies use analysis techniques in
which brain signals are averaged across space and time to improve
signal quality, combining samples from different spatial positions
(voxels) and averaging across many individual measurements. Aver-
aging across space and time in this way might obscure any information
that is present in the spatial pattern of responses in individual samples
of brain activity. Multivariate pattern recognition8 provides a way of
taking into account any such information about stimulus orientation
that may be contained in patterns of activity across the whole of
primary visual cortex. Encouraged by recent reports that multivariate
analyses can be used to successfully classify fMRI measurements of
brain activity evoked by different object categories9–11, and even

stimulus orientation (Y. Kamitani & F. Tong, J. Vis. 4, 186a, 2004), we
set out to test the hypothesis that an unconscious representation of
orientation might exist in human V1. We found that this analytical
method could successfully distinguish different patterns of activity
evoked in V1 by a brief presentation of orthogonally oriented gratings.
Moreover, when the gratings were masked so that participants were
unable to report their orientation correctly, we could still use brief
measurements of V1 activity from individual participants to predict
stimulus orientation.

RESULTS

Experiment 1

In the first experiment, we investigated whether any representation of
stimulus orientation could be detected reliably in human V1 using
high-field functional magnetic resonance imaging (fMRI) at a conven-
tional spatial resolution. We measured brain activity while four
participants passively viewed a clearly visible, obliquely oriented grating
that was presented in an annulus around the fixation point (Methods;
Fig. 1a). In separate blocks, the grating was oriented either 451 to the
right or orthogonally, 451 to the left. For the 100 voxels with the
strongest responses to both categories, we first computed how much
they preferred stimuli of either orientation. Most voxels showed a slight
orientation preference (Fig. 1b). Approximately 30% of voxels showed
a significant orientation preference at an uncorrected threshold
(Fig. 1b), and between 5% and 28% were significant even at a
conservative Bonferroni-corrected level. Next we investigated the
reproducibility of these weak orientation preferences. To achieve this,
we divided the dataset in half and computed the orientation bias for
each voxel separately for each half. Notably, a large number of voxels
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reproduced their bias from the first half in the second half (Fig. 1c),
thus pointing toward a high stability of their slightly orientation-biased
responses. Additional simulations using published data on the geome-
try of orientation pinwheeels5 confirmed that a moderate orientation
bias could indeed be expected at the spatial scale of our fMRI protocol
(Supplementary Fig. 1 online). Further analyses of the spatial dis-
tribution of orientation bias revealed no apparent spatial pattern and
no differences between radial and tangential sectors of the stimulus
(Supplementary Figs. 2 and 3 online).

Having established weak but reproducible orientation-selective
responses, we characterized how well the response of the entire ‘popula-
tion’ of voxels could be used to predict the orientation of a stimulus from
single measurements of brain activity. To do this, we jointly analyzed
responses from multiple concurrently recorded voxels using multivariate
pattern recognition methods. Pattern classifiers based on linear discri-
minant analysis were trained (for each participant) to distinguish
between the population responses to the two stimuli using data from
seven of the eight recorded sessions of imaging data (Methods; Supple-

mentary Fig. 4 online). These trained classifiers were then applied to the
independently acquired test volumes from the eighth session to see how
well the orientation of stimuli during acquisition of these volumes could
be predicted. Data used for training and testing were independent time
series collected at different times (Methods).

We found that single volumes from the test session could indeed be
classified with high accuracy (Fig. 1d,e). Moreover, classification
accuracy improved as patterns of activity across larger numbers of
voxels in V1 were taken into account. When based only on the single
voxel that showed the highest orientation bias, prediction accuracy was
around 60%. However, accuracy increased markedly as more voxels
were taken into account; it reached an asymptote at around 80%
accuracy for 20 to 50 voxels (Fig. 1d,e). Prediction accuracy was equally
good, and significantly better than chance, in every subject. After
training, our classifier predicted stimulus orientation based on single
measurements of V1 activity (Methods). Thus, a single 2-s measure-
ment of activity in V1 was sufficient to predict with 80% accuracy
which of two orthogonally orientated gratings was presented visually.
This is in marked contrast to typical fMRI data analysis, in which many
minutes of data across many participants are averaged to reveal slight
differences in activation. Indeed, averaging activity over V1 voxels in
the present experiment (as for typical fMRI data analysis, based on
voxel-wise or region-of-interest analyses) did not reveal any differential
activation comparing the orthogonally oriented gratings (Supplemen-
tary Fig. 5 online). Single functional MRI images therefore contain far
more information than is frequently appreciated12.

Experiment 2

In the second experiment, we tested whether our pattern classification
approach could be used to predict the orientation of a masked
and invisible stimulus based on response patterns in V1. We again
presented four participants with one of two orthogonally orientated
gratings, but now masked using a variant of the ‘standing wave of
invisibility’13, in which a single target bar is repeatedly alternated with
two flanking masks that share an overlapping contour. This produces
reliable and prolonged invisibility of the target bar, due to a combina-
tion of forward and backward masking, and strongly modulates target-
specific responses in primate V1 (ref. 13). We adapted this protocol
(Methods; Fig. 2) to produce prolonged masking of our oriented
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Figure 1 Orientation selectivity of fMRI responses in V1. (a) The stimuli

used for experiment 1 were two contrast-reversing gratings with orthogonal

orientation. (b) Orientation preference. T-values measuring the difference

in activation under both stimulation conditions were computed as indices

of voxel orientation bias for 100 voxels in V1 (Methods). The solid curve

shows the expected distribution of these T-values if voxels showed no

orientation bias. The numbers above each figure indicate the percentage of

voxels exceeding an uncorrected (and in parentheses a Bonferroni-corrected)
statistical threshold of P ¼ 0.05. Several voxels show an orientation bias

that even exceeds the conservative Bonferroni threshold (vertical dashed

lines). (c) Orientation bias for data acquired in the first four runs (T1) and

in the second four runs (T2). The positive correlation between these two

indices indicates that the orientation bias of many voxels is reproducible

across time. (d) Performance of a pattern classifier based on linear

discriminant analysis. Accuracy is plotted against number of voxels n

included to train the classifier. Performance based on one voxel (circle) is

above chance (lower dashed line) but increases significantly with increasing

number of voxels. A multivariate test statistic, Wilk’s lambda37 (WL), is also

reported for each subject and confirms the significant difference between

the multivariate responses for each subject under the two stimulation

conditions. The upper dotted line shows asymptotic performance with

increasing number of voxels. (e) Accuracy as in d averaged across the four

participants. Dashed lines, s.e.m.
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grating annulus. In separate blocks, participants viewed masked
gratings oriented either to the right, or orthogonally to the left,
repeatedly alternating with the mask stimulus (Methods; Fig. 2).
At the end of each block, participants indicated with a button
press which masked orientation they thought had been presented.
The masking protocol was explained to four participants before
the experiment. As the same oriented grating was presented throughout
a 15 s block, even if participants had only a fleeting impression
of its orientation, they would be able to accurately discriminate its
orientation. However, despite these instructions, participants were
completely unaware of the orientation of the masked gratings and
were at chance performance (50.3 7 0.4%, s.e.m.) in discriminating
their orientation.

Pattern classifiers were trained for each participant using data from a
subset of trials (Methods), as for the consciously perceived gratings.
Then the classifiers were applied to an independent set of fMRI data
(the remaining trials) to predict the orientation of the unconscious
gratings based on single fMRI image volumes (that is, a single
measurement for each voxel in V1). Again, we found that single
volumes could be classified with an accuracy that was significantly
above chance for each of the four participants (Fig. 3). Prediction
accuracy was at chance when only a single voxel was taken into account,

but improved substantially with increasing number of voxels. When all
100 voxels were used, prediction was significantly above chance for
every participant. Thus, even when participants’ conscious reports
indicated that they themselves could not distinguish the orientation of
a masked grating, their brain state contained information that could
permit such discrimination.

Prediction accuracy for the masked and invisible gratings, though
significantly better than chance, was nevertheless lower than for the
consciously perceived grating classification. One possible interpretation
is that the representation of masked orientation is substantially weaker
in V1, either because of the masking procedure itself or simply because
the conscious and unconscious stimuli differed in their precise physical
characteristics. Taken together, the ability of participants’ V1 to out-
perform their conscious perception in prediction accuracy indicates the
presence of some information about orientation in V1 even for the
unconscious targets. This therefore represents the first direct evidence
that human V1 is sensitive to stimulus orientations outside conscious
awareness. We also investigated orientation prediction based on signals
from visual areas V2 and V3. Prediction accuracy for both visible and
invisible gratings dropped substantially from V1 to V2, and still further
from V2 to V3 (Fig. 4). For invisible gratings, we were only able to
reliably reconstruct orientation from V1.
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Figure 3 Discrimination accuracy for prediction of orientation of the invisible

target stimuli from single samples of V1 activity. Discrimination is at chance

when prediction is based in a single voxel (circle), but increases substantially

when more voxels are included, reaching on average around 57%. Top, data

collapsed across 4 participants (dashed lines, s.e.m.). Horizontal dashed line,

chance performance. Bottom, individual subject data (here dashed lines
indicate the s.e.m. for averaging across the five possible partitionings of the

data into training and test datasets). It is clear that even for individual

participants, the prediction of the orientation of the invisible grating is above

chance when all 100 voxels are taken into account. The most conventional

multivariate test statistic, Wilk’s lambda37 (WL), is also reported for each

subject and confirms the significant difference between the multivariate

responses for the two invisible gratings.
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Figure 2 Procedures for experiment 2. (a) Target and mask stimuli used for

experiment 2. Targets were bright dashed lines (with either –451 or +451

orientation) presented in an annular window on a dark background. The mask

was a bright annulus (190 Cd m�2) into which dark lines of two orthogonal

orientations were cut. The lines of the masks and targets were in the same

position, and the breaks in the target lines coincided with the intersections

of the two orthogonal lines patterns of the mask (bottom, enlarged view).

(b) During each 15-s trial, masks were presented for 167 ms, followed
by a 34-ms gap during which the target was briefly presented for 17 ms.

Then after 17 ms, a new mask-target cycle followed. This creates a ‘standing

wave’ of orientation invisibility13, in which the orientation of the target

is invisible, even when the target-mask cycle is presented repeatedly for

extended periods of time.
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DISCUSSION

Our findings demonstrate that individual voxels in human V1 show
small but reliable orientation biases, even though the size of orientation
columns in humans is likely to be much smaller than the size of a single
voxel. The information present in these biased signals could be
accumulated across many voxels using multivariate pattern recognition
algorithms, yielding a powerful measure of orientation-selective
processing. This enabled us to infer, from single fMRI measurements
of V1 activity, which of two oriented stimuli was being viewed by our
participants. We were able to make such predictions even when
the stimuli were completely invisible to the participants. Thus,
human V1 can represent information about the orientation of
visual stimuli that cannot be used by participants to make a simple
behavioral discrimination.

Several possibilities may account for the weak orientation bias that
we found in individual voxels, despite the relatively low spatial
resolution of our fMRI measurements relative to that of orientation
pinwheels4,5. First, anisotropies in orientation processing exist for
horizontal and vertical versus oblique stimuli14, and for radial versus
tangential stimuli15,16. Our obliquely oriented stimuli were deliberately
chosen to avoid potential differences in V1 activity resulting from these
anisotropies. However, our stimuli do have some regions that are
predominantly radial and others that are predominantly tangential (or
concentric) relative to fixation. We examined activity in these regions to
determine whether such regional differences in orientation might cause
the orientation bias (Supplementary Fig. 3). However, we found no
differences in orientation bias between sectors with radial versus
tangential orientations, and no other apparent pattern in the spatial
distribution of orientation bias (Supplementary Figs. 2 and 3).

A second possibility is that the orientation biases result from
anisotropies in the orientation map itself. The orientation profile
sometimes does not change for up to 1–2 mm along the cortical
sheet, and there are also fractures and discontinuities5 in the pattern of
orientation pinwheels. Thus, any randomly placed neuroimaging voxel
will sample an anisotropic distribution of orientation preferences. Our
simulations using published data on the geometry of orientation
pinwheels in monkeys5 (Supplementary Fig. 1) confirmed that such
a moderate orientation bias of individual voxels could be expected at
the spatial resolution of fMRI. In addition, the convoluted nature of the
cortical surface means that individual voxels will not be collinear with
the cortical surface, leading to further subtle anisotropies of the
number of orientation-specific columns in each voxel. Although such
a macroscopic orientation-biased signal cannot be used to study the
detailed tuning of individual orientation columns, it can be used (as
here) as a direct indicator of orientation-selective processing, rather
than using indirect measures such as selective adaptation1–3,6,7.

Despite complete and continuous perceptual suppression, responses
of human primary visual cortex nevertheless still showed orientation

selectivity. This has important implications for the role of V1 in visual
awareness17,18, which has been controversial. Although some studies
have shown that activity in V1 can be closely correlated13,18–22 with
conscious visual perception, others have found no such correlation23,24.
However, such observations do not establish whether activity in
primary visual cortex necessarily leads to conscious perception. To
determine if activity in V1 necessarily leads to awareness, it is necessary
to investigate whether or not responses in V1 can occur in the complete
absence of conscious perception. Evidence that human V1 processes
unconscious stimuli has previously been indirect. Psychophysical
studies have demonstrated selective adaptation to invisible orientation
stimuli1–3, suggesting that these stimuli are processed in V1. Also,
temporal, parietal and frontal cortical areas can be activated by
unperceived stimuli25–29. However, given the evidence for direct
thalamic input into extrastriate cortex30 and the substantial activation
of extrastriate cortex without input from V1 (ref. 31), it is not evident
that this relies on the pathway through V1. Furthermore, many of these
studies have relied on types of behavioral judgments that have been
criticized as too lenient for accurately judging the absence of aware-
ness32. The only widely accepted method for ensuring that a stimulus
was not consciously perceived is to show that a subject’s performance is
at chance level when forced to perform a discrimination on the
stimulus32, as in the present study. Our study thus provides direct
evidence that human primary visual cortex can process the orientation
of completely invisible stimuli, suggesting that selective processing in
V1 is not sufficient to cause visual awareness. Whether to be repre-
sented in conscious experience information has to cross a threshold
level of activity, or perhaps needs to be relayed to another region of the
brain, is an intriguing question for further research.

In summary, we have shown that individual voxels in primary visual
cortex show weak but reliable orientation preferences. Using multi-
variate pattern recognition, we have been able to accumulate this weak
information across many voxels, yielding a powerful and direct index of
orientation-selective processing. We found that even completely invi-
sible oriented stimuli were processed in human V1 in an orientation-
selective fashion. Thus, feature-specific representation in V1 of humans
may be necessary but is not sufficient for consciousness.

METHODS
Participants and experimental design. Six healthy, right-handed volunteers

with normal vision (age 25–33 years) gave written informed consent to

participate in the study, which was approved by the University College London

ethics committee. Two people participated in experiment 1 alone, two

participated in experiment 2 only, and two participated in both experiments.

In the first experiment, stimuli were tilted gratings (spatial frequency 2 cpd;

Michelson contrast 90%) presented within a smoothed annular window that

subtended from 41 to 81 eccentricity (Fig. 1). Stimuli were presented in

alternating blocks of 30 s, during which gratings with one of two possible

orientations (either –451 or +451) were selected and continuously contrast
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Figure 4 Discrimination accuracy compared across visual areas (averaged

across participants, error bars, s.e.m.). For both visible and invisible

orientation stimuli, the prediction is significantly better in V1 than in V2 and

V3. For invisible gratings, reliable above-chance prediction is possible only

from signals recorded in V1. The accuracy in V2 and V3 for invisible stimuli

is much lower (compared with visible stimuli) than it is in V1. (Predictive

accuracy for unseen stimuli as a proportion of accuracy for seen stimuli is

27.6% in V1, 4.3% in V2 and 5.0% in V3, using pobserved ¼ ppred +
(1 – ppred) pguess to adjust for guess rate, where pobserved is the observed

accuracy, ppred is the corrected accuracy and pguess is 0.5). However,

because of the large differences in cortical architecture and size between V1,

V2 and V3, we cannot exclude the possibility that V2 and V3 are weakly

activated by orientation stimuli.
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reversed at a frequency of 4 Hz. Participants viewed the gratings passively while

monitoring a color change to the central fixation spot. Mean luminance of the

gratings was equal to background luminance (100 Cd m�2). During each of the

eight scanning runs, four such blocks were presented, two with gratings of each

orientation. Before scanning, participants practiced to ensure they would be

able to perform the task and maintain stable fixation.

In the second experiment, participants viewed stimuli similar to those used

in the first experiment but now rendered invisible by metacontrast masking13.

Target stimuli were ‘dashed’ white gratings (spatial frequency 2 cpd; luminance

145 Cd m�2; duty cycle 10%) with an orientation of either –451 or +451 that

were presented within an annulus (diameter 41 to 81) on a black background

(Fig. 2). Targets were repeatedly presented briefly for 17 ms every 200 ms,

interleaved by long presentations of the mask stimuli (190 Cd m�2) for 167 ms.

This creates a so-called ‘standing wave of invisibility’13, which optimally

combines forward and backward metacontrast masking and renders the

orientation of the target invisible, even for prolonged periods of presentation.

As in previous studies13, pilot experiments showed that maximum masking was

achieved when the mask followed the target by a small delay and the target

followed the mask immediately. During each trial, one target orientation

was randomly chosen, and the target-mask cycle was presented for 15 s.

Participants were required to maintain fixation on a central fixation spot and

to try and identify the orientation of the target. After offset of the target,

participants were given 500 ms to judge the orientation of the target. The

performance of all four participants was at chance level. Before scanning,

participants practiced to ensure they would be able to perform the task and

maintain stable fixation.

fMRI acquisition. A Siemens Allegra 3T scanner with Nova Medical occipital

surface coil was used to acquire functional MRI volumes (20 slices; TR, 1.3 s) at

a conventional resolution of 3 � 3 � 3 mm. Eight runs of 125 functional MRI

volumes per participant were acquired in experiment 1. In experiment 2,

acquisition was modified and arranged into 90 runs, each of which comprised

13 volumes (corresponding to one trial). Runs were self-paced with a pause of

around 5 s between each and with long breaks after every thirtieth run. In both

experiments, a T1-weighted structural image was also acquired, together with

2–3 retinotopic mapping runs of 165 volumes each, during which participants

viewed standard stimuli that mapped the horizontal and vertical meridians.

Data analysis. Data were preprocessed using SPM2 (http://www.fil.ion.ucl.

ac.uk/spm). After discarding the first three images of each scanning run to

allow for magnetic saturation effects, we realigned and coregistered the

remaining images to the individual participants’ structural scans. To identify

stimulus-driven cortical regions, the data were modeled voxel-wise, using a

general linear model that included the two experimental conditions33. To

extract activity from primary visual cortex, we created a mask volume defining

V1. This was obtained using the meridian localizers from the retinotopic

mapping sessions following standard definitions of V1 (ref. 34) together with

segmentation and cortical flattening in MrGray35,36.

Voxel orientation bias. As a measure of orientation bias, we computed

the difference in activation under both stimulation conditions as

T ¼ ð�x1 � �x2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

1=N1 + s2
2=N2Þ

p
separately for the 100 voxels in V1 that

showed the strongest stimulus-driven responses. Here �xi and si denote the

univariate means and standard deviations for one voxel when stimulated with

orientation i. If signals in these voxels were not orientation biased, the

distribution of T values across voxels should follow a T-distribution with 542

degrees of freedom (solid lines in Fig. 1b).

Pattern classification. In the first experiment, 17 recorded images were

extracted for each of the 32 stimulation blocks (eight runs � four blocks per

run; delayed by three volumes to account for the delay of the hemodynamic

response function), yielding a total of 544 volumes (details in Supplementary

Fig. 4). Classification performance was assessed using linear discriminant

analysis with m-fold cross-validation8. The images were split into eight groups,

each including the two blocks of each stimulation condition from one run

(Supplementary Fig. 4). Images from one of these groups were assigned to a

test dataset, and the images for the remaining seven groups were assigned to a

training dataset yielding 238 training volumes and 34 test volumes for each of

the two conditions. (Training and test datasets were acquired in independent

blocks.) In the second experiment, ten recorded images were extracted for each

of the 90 trials (delayed by three volumes to account for the delay of the

hemodynamic response function and T1 saturation), yielding a total of 900

volumes (90 runs � 10 images per run). The images were split into five groups,

each including nine runs of each stimulation condition. Images from one of

these groups were assigned to a test dataset, and the images for the remaining

runs were assigned to a training dataset, yielding 90 training volumes and 360

test volumes for each of the two conditions. The sequence of training and test

was repeated eight times for experiment 1 and five times for experiment 2 (each

time assigning a different group of images to the independent test dataset).

For each training and test volume, we computed first a raw activation vector

a that was obtained by extracting fMRI signal intensity from the 100 voxels of

that subject’s V1 that showed a maximal main effect of stimulation across all

conditions. This was transformed to a normalized activation vector x with unit

length following x ¼ a=jjajj. To achieve optimal (minimum error-rate) classi-

fication, a sample with response vector x from the test dataset is assigned to the

stimulus category si for which the posterior probability distribution

pðsijxÞ ¼ pðxjsiÞ pðsiÞ=pðxÞ ð1Þ

estimated from the training dataset is maximal8. Under flat (unbiased) priors,

p(si) as here is sufficient to maximize p(x|si). When the responses of both

categories follow a multivariate normal distribution with equal covariance

matrices R ¼ R1 ¼ R2, the maximization of p(x|si) can be achieved by

computing the Mahalanobis distance between a given test sample x and the two

sample means from the training dataset, �x1 and �x2, (ignoring constants)8:

MDðiÞ ¼ ðx � �xiÞT S�1ðx � �xiÞ ð2Þ

where S is the pooled covariance matrix estimated from the sample. The vector

is then assigned to the stimulus category for which MD(i) is minimal. The

parameters S, �x1 and �x2 are obtained using only the training dataset. In our

case, the pattern classification was done on an increasing number of voxels

(between 1 and 100), for which the voxels were rank ordered according to their

T-value (for the difference between the two orientations), again computed from

the training dataset only.

Additionally, we trained a non-parametric classification algorithm that

estimates p(x|si) based on Parzen windows8. Both parametric and non-para-

metric classifiers8 performed equivalently and significantly above chance in

classifying both conscious and unconscious oriented gratings (Supplementary

Fig. 5). Thus, the precise choice of discriminant function did not affect the

reliability of our findings. In contrast, prediction was much worse when based

on a conventional region of interest (ROI) analysis or on the single best voxel

(Supplementary Fig. 5). As a further validation of our results, we computed

the most conventional multivariate test statistic, Wilk’s lambda, which tests for

significant differences between multivariate means37. This has the advantage

that it does not rely on a training-test cycle. This confirmed the significant

differences between the response patterns (Figs. 1 and 3).

Note: Supplementary information is available on the Nature Neuroscience website.
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