Preceding Inhibition Silences
Layer 6 Neurons in Auditory Cortex

Yi Zhou,1 Bao-hua Liu,1 Guangying K. Wu,1 Young-Joo Kim,1 Zhongju Xiao,4,* Huizhong W. Tao,1,2 and Li I. Zhang1,3,*

1Zilkha Neurogenetic Institute
2Department of Cell and Neurobiology
3Department of Physiology and Biophysics
Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
4Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
*Correspondence: xiaozj@fimmu.com (Z.X.), liizhang@usc.edu (L.I.Z.)
DOI 10.1016/j.neuron.2010.02.021

SUMMARY

A canonical feedforward circuit is proposed to underlie sensory cortical responses with balanced excitation and inhibition in layer 4 (L4). However, in another input layer, L6, sensory responses and the underlying synaptic circuits remain largely unclear. Here, cell-attached recordings in rat primary auditory cortex revealed that for the majority of L6 excitatory neurons, tonal stimuli did not drive spike responses, but suppressed spontaneous firings. Whole-cell recordings further revealed that the silencing resulted from tone-evoked strong inhibition arriving earlier than excitation. This pattern of inputs can be attributed to a parallel feedforward circuit with both excitatory and inhibitory inputs disynaptically relayed. In contrast, in the other neurons directly driven by thalamic input, stimuli evoked excitation preceding relatively weak inhibition, resulting in robust spike responses. Thus, the dichotomy of L6 response properties arises from two distinct patterns of excitatory-inhibitory interplay. The parallel circuit module generating preceding inhibition may provide a gating mechanism for conditional corticothalamic feedback.

INTRODUCTION

Studies of various adult sensory cortices suggest that neurons receive balanced excitatory and inhibitory inputs activated by sensory stimulation (Moore et al., 1999; Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004; Mariño et al., 2005; Okun and Lampl, 2008). In layer 4 (L4) of the auditory cortex, such balance is marked by the similar tuning of excitatory and inhibitory inputs and the relatively constant ratio between their strengths. In addition, stimulation often evokes a stereotypic sequence of excitation followed within a few milliseconds by inhibition (Ojima and Murakami, 2002; Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004). Such a spectral and temporal relationship between excitation and inhibition can be explained by a canonical feedforward circuit, wherein the L4 neuron receives direct thalamic excitatory input and disynaptic feedforward inhibitory input from local inhibitory neurons driven by the same set of thalamic inputs (Tan et al., 2004; Gabernet et al., 2005). Under balanced excitation and inhibition, the dynamic range of neuronal representation of sensory stimuli can be broadened (Salinas and Sejnowski, 2000; Turrigiano and Nelson, 2004). The balance has also been proposed to play an important role in shaping receptive field (RF) properties as well as temporal patterns of spike responses. For example, the cotuned but temporally delayed inhibition will enhance the sharpness of the spike tuning through an iceberg effect (Shamma and Symmes, 1985; Somers et al., 1995; Anderson et al., 2000; Wang et al., 2002; Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004). In addition, the closely followed inhibition limits the integration window for spike generation, enhancing the precision of spike timing and allowing the neuron to behave as a better coincidence detector for synchronous inputs (Pouille and Scanziani, 2001; Wehr and Zador, 2003; Higley and Contreras, 2006).

However, given the highly diverse response properties of cortical neurons, a simple circuit with balanced excitation and inhibition seems limited for creating the functional diversity (de la Rocha et al., 2008). In the primary auditory cortex (A1), neurons exhibit heterogeneous RF properties with respect to frequency and intensity tuning (Schreiner et al., 2000; Sutter and Loftus, 2003), as well as a wide range of temporal response profiles from phasic to sustained responses (Volkov and Galaz-juk, 1991; Recanzone, 2000; Wang et al., 2005). Indeed, recent studies have shown that for intensity-tuned neurons, the recruitment of excitation and inhibition as sound intensity increases is unbalanced, and the temporal interval between excitation and inhibition shortens with the increase of intensity (Wu et al., 2006). In fact, even for non-intensity-tuned neurons, the excitatory-inhibitory balance should be viewed as only approximate, since inhibition exhibits relatively broader frequency tuning than excitation around the best frequency (BF) (Wu et al., 2008). Thus, how much the excitatory-inhibitory balance can be generalized to cortical neurons remains to be determined. More importantly, how the precise spectral and temporal interplay between excitatory and inhibitory inputs creates the diverse response properties needs to be further investigated.
Anatomical studies in various species have indicated that thalamocortical axons from the medial geniculate body (MGB) form synapses in both L4 and layer 6 (L6) of the A1 (Winer et al., 2001, 2005; Llano and Sherman, 2008). In vivo and in vitro recordings also showed that auditory input or thalamic stimulation can elicit responses in L6 with the shortest onset latencies (Kaur et al., 2005; Lakatos et al., 2007; Wallace and Palmer, 2008), suggesting that L6 receives direct thalamic input. Conversely, L6 in various primary sensory cortices sends feedback projections predominantly to the first-order thalamic nucleus (i.e., ventral MGB of the auditory thalamus, MGBv) (Ojima, 1994; Prieto and Winer, 1999; Winer, 2005; Takayanagi and Ojima, 2006; Rouiller and Welker, 2000; Llano and Sherman, 2008), whereas layer 5 (L5) neurons project back to medial and dorsal MGB (MGBd and MBGm) as well as other subcortical nuclei (Games and Winer, 1988; Ojima, 1994; Winer, 2005; Takayanagi and Ojima, 2006; Llano and Sherman, 2008). It has been proposed that the corticothalamic (CT) feedback from L6 modulates thalamic responses (Villa et al., 1991; Zhang and Suga, 1997; Yan and Ehret, 2002) and plays a role in mediating the induction of sound-specific plasticity in the auditory thalamus (Zhang and Suga, 2000; Suga and Ma, 2003; Zhang and Yan, 2008). Interestingly, it has been observed that CT neurons in L6 of cat motor and visual cortices have no clearly responding sensory RFs (Tsumoto and Suda, 1980; Sirota et al., 2005). Compared with those of L4, the synaptic circuitry mechanisms underlying the auditory processing in L6 have been poorly understood, partly due to the technical difficulties in recording from neurons in deep layers in vivo. In this study, by using cell-attached and whole-cell recordings, we examined the functional properties of L6 neurons and the underlying synaptic mechanisms. We found that tonal stimuli did not drive spike responses in the majority of L6 excitatory neurons, reminiscent of the previous studies (Tsumoto and Suda, 1980; Sirota et al., 2005), but suppressed their spontaneous firings at the expected tonal RF (TRF). The suppression of evoked spike responses results from a synaptic integration pattern with a strong inhibitory input preceding the coactivated excitatory input. Thus, different from L4, the L6 circuit mainly results in a reversed temporal relationship between excitatory and inhibitory inputs, which can be attributed to a parallel feedforward circuit with both the excitatory and inhibitory inputs disynaptically relayed. Our results suggest that inhibition may play an essential role in creating a wide diversity of response properties, through its specific spectral and temporal patterns inherited from the local cortical circuitry. Finally, we hypothesize that the specific L6 circuit generating preceding inhibition may provide a gating mechanism for a conditional CT feedback, which may only be activated under certain circumstances such as conditioning.

RESULTS

Two Types of Spike Responses in Layer 6 Neurons of the Adult A1
We first examined the spike TRFs of L6 excitatory neurons in the adult rat A1 by loose-patch cell-attached recordings (see Experimental Procedures). For each neuron, spike TRF was mapped with 71 × 8 tonal stimuli (see Experimental Procedures) for three to five repetitions. Surprisingly, in a total of 41 randomly recorded regular-spike (RS) neurons (i.e., presumptive excitatory neurons; see Experimental Procedures), tone-driven spike responses were only observed in less than half of them (14 out of 41, named “normal-type”). Twenty-seven neurons could not be driven by tone stimuli (named “silent-type”), although spontaneous firings could be observed. Example neurons are shown in Figures 1A and 1B. The normal-type neuron exhibited a V-shaped spike TRF similar to that of L4 neurons (Figure 1A), while no spike TRF could be identified for the silent-type neuron (Figure 1B). Instead, in the region of frequency-intensity space where the TRF was expected to appear (as suggested by the recording of local field potentials, or LFPs), the spontaneous firing was clearly suppressed (Figure 1B). We also specifically examined fast-spike (FS) inhibitory neurons by using recording pipettes with a smaller tip (Wu et al., 2008). For FS neurons, the trough-to-peak interval of the spike was 0.34 ± 0.12 ms (mean ± SD, n = 8), whereas it was 0.75 ± 0.18 ms for RS neurons, consistent with previous studies (Mountcastle et al., 1969; Swadlow, 1989; Wu et al., 2008; Atencio and Schreiner, 2008). All the recorded FS neurons exhibited well-defined spike TRFs, and responded reliably to tone stimuli within their TRF regions (Figure 1C). The L6 normal-type neurons possessed slightly broader spike TRFs than L4 excitatory neurons (Figure 1D, upper panel). The plot of spontaneous versus evoked firing rate revealed that there were two distinct classes of L6 excitatory neurons (Figure 1D, bottom panel). The silent-type neurons, although displaying very low levels of evoked responses, exhibited significantly higher spontaneous firing rates than the normal-type neurons (p < 0.01, t test), indicating that it is unlikely that the absence of tone-evoked responses in these neurons was due to a nonspecific reduction of activity level during the experiments. The existence of two classes of L6 neurons was observed under two different anesthesia conditions and in both sides of the cortex (Figure 1D, bottom panel).

Membrane Potential Responses of Layer 6 Neurons
The existence of two types of L6 responses suggests that the patterns of the underlying synaptic inputs may be distinct. To explore this issue, we carried out current-clamp recordings to examine tone-evoked suprathreshold and subthreshold membrane potential responses. Figure 2A shows a typical silent-type neuron. It lacked a spike TRF region (Figure 2A, top panel). However, it displayed a clear V-shaped membrane potential response area within which only hyperpolarizing responses were observed (Figure 2A, bottom panel). This explains why the neuron did not exhibit evoked spike responses. In contrast, a normal-type neuron displayed a clear spike TRF, which was narrower than the subthreshold membrane potential response area where depolarizing responses were evoked (Figure 2B). The membrane potential TRF of the normal-type neuron appeared similar to that of L4 neurons (Tan et al., 2004; Wu et al., 2008). The plot of the peak amplitude of the membrane potential response versus the response onset latency for all the recorded neurons again revealed two clusters (Figure 2C). The normal-type neurons exhibited depolarizing responses with shorter onset latencies, whereas the silent-type neurons...
Excitatory and Inhibitory Synaptic Inputs to Layer 6 Neurons

What patterns of excitatory and inhibitory synaptic inputs cause hyperpolarizing responses? To address this issue, we applied

Figure 1. Spike TRFs of Individual Neurons in Layer 6 of the Rat A1

(A) An example normal-type (N-type) neuron as determined by cell-attached recording. (Left) Spike TRF mapped in one trial. Each small trace (100 ms) in the frequency-intensity space represents the response of the cell to a tone of a particular frequency and intensity. (Right) The color map displays the cell’s spike TRF with the color representing the average firing rate. Twenty randomly selected individual spikes are superimposed below the color map. The cell is a typical regular-spike (RS) neuron according to the spike shape.

(B) An example silent-type (S-type) neuron. Data are presented in a similar manner to that in (A). TRF of local field potential (LFP) at recording site is displayed below the corresponding spike TRF. Note that both N- and S-type neurons are only defined for RS pyramidal neurons.

(C) An example fast-spike (FS) interneuron. Note that the interval between the negative and positive peaks of the spike shape is shorter than that of RS neurons.

(D) (Upper panel) Average bandwidth (responding frequency range) of spike TRFs for different types of neurons in L4 and L6. Bandwidth was measured at 30 dB above the threshold intensity of the TRF (BW30). The numbers of cells are indicated. RS(N): regular-spike normal-type neuron. Bar represents SEM. *p < 0.1; **p < 0.002, ANOVA and post hoc Schefte test. (Lower panel) Average rate of spontaneous and tone-evoked spikes (after subtraction of the basal level activity) of all the recorded RS neurons in L6. The evoked firing rate was averaged from responses at the characteristic frequency (CF) from 20 dB above intensity threshold to 70 dB SPL. The CF was determined by the TRF of LFPs in the case of S-type neurons. Cells recorded under different anesthesia are indicated. R and L indicate that recordings were made in the right and left hemisphere, respectively. Tone stimuli were always applied to the contralateral ear. Clustering (N- and S-type) is based on K-means method.

Figure 2. Membrane Potential TRFs of the Two Types of Excitatory Neurons in Layer 6

(A) An example silent-type neuron. (Upper left) Spike TRF mapped in one trial. Each small trace is a 100 ms response trace under current-clamp mode. (Upper right) Color map displays the spike TRF with the color representing the average firing rate. An example spike is shown below. (Lower panel) Membrane potential responses with the spikes removed (using a 10 ms median filter). Color represents the average peak amplitude of the evoked membrane potential change. Three enlarged response traces are shown.

(B) An example normal-type neuron. Data are presented in the same manner as in (A).

(C) The peak amplitude of evoked membrane potential change versus the response onset latency. Each data point represents one cell. Response to tone at the best frequency at 70 dB was measured. Clustering is based on K-means method. Triangle is the clustering center and whiskers are the corresponding standard deviation from the center.

displayed hyperpolarizing responses with longer onset latencies (p < 0.01, t test). Thus, the silent-type responses are not due to a lack of synaptic inputs, but to the fact that synaptic inputs result in hyperpolarizing membrane potential responses.
Interestingly, the temporal relationship between excitation and inhibition was much weaker than the coactivated inhibitory input preceded the coactivated excitatory input by a brief interval, and this is the case for almost all the responses evoked by the effective stimuli (Figure 3B). Also similar to L4 responses, the excitatory input preceded the coactivated inhibitory input by a brief interval, and this is the case for almost all the responses evoked by the effective stimuli (Figure 3C). In comparison, in cell #6, inhibition stronger than excitation was elicited (Figures 3E and 3F). Interestingly, the temporal relationship between excitation and inhibition was reversed, with the onset latencies of inhibitory responses mostly shorter than the corresponding excitatory responses (Figure 3G). Considering that earlier arriving, strong inhibition may be effective in reducing membrane excitation to levels below the spike threshold, cell #6 may function like a silent-type neuron as observed in cell-attached recordings.

Because QX314, a blocker of voltage-gated sodium channels, was included in the intracellular solution to improve the quality of voltage-clamp recordings (Nelson et al., 1994; Wu et al., 2006, 2008), we had been unable to experimentally obtain the spike TRFs of the whole-cell recorded neurons. Nonetheless, we derived tone-evoked membrane potential responses by integrating experimentally determined excitatory and inhibitory synaptic conductances in an integrate-and-fire model (see Experimental Procedures). To understand how synaptic inhibition shapes the membrane potential response, we also derived membrane potential responses in the absence of inhibitory input. By setting the spike threshold at 20 mV above the resting membrane potential, we estimated the suprathreshold response region in the frequency-intensity space for the recorded cells.
Figure 4. Synaptic TRF Properties of Normal- and Silent-Type Neurons in Layer 6
(A) Four other putative normal-type neurons (cell numbers are indicated on the left). (Left) The peak amplitude of inhibitory conductance versus that of the excitatory conductance activated by the same stimulus for effective tones at 70 dB. (Right) Distribution of relative latency for the same set of responses. Inset, example excitatory (red) and inhibitory (blue) responses. Each trace is an average of three responses to 70 dB tones at or near the best frequency.
(B) Six other putative silent-type neurons. Data are presented in the same manner as in (A).
(C) Average peak amplitudes of excitatory (Ex) and inhibitory (In) conductances evoked by three 70 dB tones at and near the best frequency. Data points for the same cell are connected by a line. **p < 0.01, paired t test.
(D) Average onset latencies of excitatory and inhibitory conductances as in (C). **p < 0.01, paired t test.
(E) The relative latency versus the ratio between the peak amplitudes of evoked inhibitory and excitatory conductances (I/E ratio), based on the data shown in (C) and (D). Clustering is based on K-means method.
For cell #1, the membrane potential responses derived from excitatory input alone, and by integrating excitatory and inhibitory inputs gave rise to similar spike TRFs (Figure 3D), suggesting that the weak inhibition had minor effects on the size of the spike TRF. In contrast, in cell #6, while excitatory input alone generated a normally appearing spike TRF, the presence of inhibition had greatly suppressed spike responses, resulting in scattered spikes in the frequency-intensity space and an absence of a clear spike TRF (Figure 3H). Based on these results, it is likely that cell #1 and cell #6 were functionally normal-type and silent-type neurons, respectively.

Synaptic Mechanisms underlying the Two Types of Layer 6 Responses
We have obtained synaptic responses from a total of 33 presumptive excitatory neurons in L6 with whole-cell voltage-clamp recordings (see Figures S1A and S1B, available online, and Experimental Procedures for discussion). Interestingly, in all of these neurons, tone-evoked excitatory responses were observed, indicating that the “silence” of many L6 neurons was not due to an absence of excitatory drive. In 12 of the 33 neurons, we obtained complete excitatory and inhibitory synaptic TRFs. They appeared to separate into two groups, based on the relative strengths of excitatory and inhibitory inputs activated by the same stimulus, as well as the temporal relationship between the two inputs. The first group of neurons (5 out of 12) exhibited similar synaptic input patterns to those of cell #1. They received relatively stronger excitation than inhibition, and for most of responses, the inhibitory input temporally followed the excitatory input (Figure 4A). On the contrary, the second group (7 out of 12, including cell #6) received stronger inhibition than excitation, and the inhibitory input mainly preceded the excitatory input (Figure 4B). These synaptic properties suggest that the two groups of neurons are likely composed of normal-type and silent-type neurons, respectively. To summarize the differences between the two groups, 3–4 synaptic responses at and around the BF at 70 dB were averaged in order to analyze the response amplitude and onset latency. As shown in Figure 4C, the peak amplitude of inhibition was significantly lower than that of excitation in the normal-type neurons (p < 0.01, t-test), but was significantly higher than excitation in the silent-type neurons (p < 0.01, t-test). This results in a significant difference in the amplitude ratio of inhibition over excitation (I/E ratio) between the groups (normal-type: 0.5 ± 0.2; silent-type: 3.0 ± 1.5; mean ± SD; p < 0.001, t-test), whereas they did not differ significantly in the absolute strength of excitation (p > 0.2, t-test). Inhibition displayed a significantly longer onset latency than excitation in the normal-type neurons (p < 0.01, paired t-test), but a significantly shorter latency in the silent-type neurons (p < 0.01, paired t-test) (Figure 4D). The relative latency of inhibition was −1.62 ± 0.73 ms in the normal-type neurons and 1.58 ± 0.57 ms in the silent-type neurons (p < 0.001, t-test).

Modeling Outputs from Different Patterns of Synaptic Inputs
To further understand how the amplitude and temporal relationships between excitatory and inhibitory inputs affect the output response, we applied a single-compartment neuron model to simulate membrane potential responses resulting from different patterns of synaptic inputs, with the temporal profile of modeled synaptic responses derived from our experimental data (see Experimental Procedures). We systematically varied the strength of the inhibitory input, the I/E ratio, and the interval between the onsets of the two inputs. When the modeled excitatory input (with a 2 nS peak amplitude) preceded a weak inhibitory input (with a 1 nS peak amplitude) by 2 ms, synaptic integration results in a strong membrane depolarization of the cell (Figure 5A, top panel). In contrast, when a strong inhibitory input (6 nS) precedes the excitatory input (2 nS) by 2 ms, synaptic integration results in a hyperpolarization (Figure 5A, bottom panel). With inhibition preceding the excitation by 2 ms and the strength of the excitation fixed, increasing the strength of the inhibition monotonically reduces the level of the evoked membrane depolarization, which becomes lower than the spike threshold when the I/E ratio is higher than 0.5 (Figure 5B). Keeping the I/E ratio at 3 but changing the absolute strengths of excitation and inhibition only slightly varies the level of the membrane depolarization (Figure 5C). With the strengths of excitation and inhibition set the same (2 nS and 6 nS), varying the relative latency of inhibition results in a biphasic change in the membrane depolarizing response (Figure 5D). Interestingly, the lowest level of membrane depolarization, or in other words the highest level of suppression, occurs when the inhibitory input precedes the excitatory input by 1.5–2 ms (Figure 5D), which matched the observed temporal delay in the silent-type neurons. Taken together, our modeling results indicate that the level of the membrane depolarizing response is highly sensitive to the ratio between the strengths of excitation and inhibition, as well as their temporal relationship.

Potential Local Circuits in Layer 6
What synaptic circuits can account for the normal and reversed temporal relationships between excitation and inhibition in L6? To address this issue, we compared the onset latency of spike responses of different types of neurons as well as that of excitatory and inhibitory synaptic responses in these neurons. Because neurons in the rat A1 mostly exhibit transient/phasic spike responses to tonal stimuli with their onsets precisely from integrating excitatory and inhibitory inputs for each neuron. In the presence of inhibition, the total frequency responding range of spike responses (at 70 dB) was only slightly reduced in the normal-type neurons, but was severely reduced in the silent-type neurons (Figure 4F). These results suggest that the silent-type responses identified in extracellular recordings can be attributed to the stronger inhibition and its earlier onset than that of excitation, whereas L4-like synaptic responses with excitation followed by inhibition lead to normal spike TRFs in L6.

(F) The percentage reduction of the total frequency responding range of spike responses after integration of inhibition. Comparison was made between spike responses to 70 dB tones derived from excitation alone and derived from integration of both excitation and inhibition.
Excitatory responses of normal-type neurons in the control cortex are time-locked to the onset of stimuli (Wehr and Zador, 2003; Tan et al., 2004), the difference in onset delay may reflect that in the number of relays in the cortical circuit. In L4 excitatory neurons, the onset of inhibitory input is slightly later than that of excitatory input, while it is comparable with the timing of firing of inhibitory neurons in the same layer (Figure 6A, top panel). This is consistent with the canonical feedforward circuit, wherein L4 inhibitory neurons receive direct thalamic input and provide disynaptic inhibitory input to nearby excitatory neurons (Figure 6D, left). Likely the L4 excitatory neurons need a longer integration time for spike generation; therefore, they spike later than nearby inhibitory neurons (Figure 6A, top panel). In L6 normal-type neurons, the onset latencies of excitatory and inhibitory inputs are similar to those in L4 excitatory neurons (p > 0.5, t test), and the onset of excitation is similarly earlier than that of inhibition (Figure 6A, bottom panel). This suggests that a similar feedforward circuit may account for the synaptic inputs to L6 normal-type neurons (Figure 6D, left).

Compared with that of the normal-type neurons, the onset of excitatory inputs to silent-type neurons is much delayed (Figure 6A, bottom). There are two plausible explanations for this observation: (1) the L6 silent-type neuron does not receive direct thalamic input, but rather receives polysynaptic excitatory input from other cortical neurons; and (2) the L6 silent-type neuron receives direct thalamic input, but it is much slower compared to that received by the normal-type neuron due to a slower axonal conduction of impulses and/or slower transmission at thalamocortical synapses. To distinguish these possibilities, we recorded excitatory responses after eliminating intracortical inputs by silencing the cortex with a cocktail of muscimol and SCH90511 (Liu et al., 2007; see Experimental Procedures). Extracellular recordings confirmed that firings of both L4 and L6 neurons were blocked after local cortical injection of the cocktail (see Figures S2A–S2C). Two types of excitatory responses were observed in the silenced cortex. Five out of fourteen neurons exhibited fairly normal excitatory TRFs (Figure 6B, top panel), indicating that these neurons received direct thalamic input. Nine neurons did not show evoked excitatory responses at all, although spontaneous synaptic currents were observed (Figure 6B, bottom panel). In the silenced cortex, the remaining excitatory responses displayed short latencies comparable to those of membrane depolarization and excitatory responses of normal-type neurons in the control cortex (Figure 6C). Excitatory responses with long latencies comparable to those of silent-type neurons were not observed in the silenced cortex (Figure 6C), indicating that the long-latency excitatory responses observed in silent-type neurons can be attributed to intracortical inputs. Based on the above results, we propose a parallel feedforward circuit for L6 silent-type neurons (Figure 6D, right), in which both the excitatory and inhibitory inputs are polysynaptically relayed from the thalamocortical projection. Because the onsets of firings of RS normal-type and FS neurons were similar to those of the excitatory and inhibitory inputs to the silent-type neurons (Figure 6A, bottom panel), it is likely that this circuit module is quadripartite, with the excitation and inhibition dysynaptically relayed by RS and FS neurons (respectively) that are directly driven by thalamic input.

Figure 5. Modeling the Impacts of Excitatory and Inhibitory Inputs on Membrane Potential Responses

(A) (Left) Temporal profiles of the evoked excitatory (red) and inhibitory (blue) conductances used in the model (see Experimental Procedures). The peak conductances are 2 nS (red)/1 nS (blue) for an average normal-type neuron and 2 nS (red)/6 nS (blue) for a silent-type neuron. Scale: 1 nS and 5 ms. (Right) Temporal profiles of the membrane potential responses (V_m) derived by integrating the excitatory and inhibitory inputs. Scale: 3 mV (upper)/1 mV (lower), 10 ms.

(B) The peak amplitude of the evoked membrane depolarizing response versus the relative level of inhibition. V_r represents the peak amplitude of the depolarization in the simulated membrane potential response. The peak excitatory conductance was set at 2 nS, and the relative latency was set at 2 ms. Two dashed lines mark the level of the resting membrane potential (V_r) and the spike threshold (V_T). Responses below the V_r are omitted.

(C) The level of membrane depolarizing response versus the strength of the excitatory input. The I/E ratio was set at 3, and the relative latency was set at 2 ms.

(D) The level of membrane depolarizing response versus the relative latency. The strengths of excitatory and inhibitory inputs were fixed at 2 and 6 nS, respectively.

Figure 6. Comparing the Onset Latencies of Excitatory and Inhibitory Inputs in Different Neuron Types

(A) (Left) Temporal profiles of excitatory and inhibitory responses in normal-type (Normal) and silent-type (Silent) neurons after eliminating intracortical inputs. (Right) Extracellular recordings confirmed that the onset of excitatory input to normal-type neurons (A) and silent-type neurons (B) is time-locked to the onset of stimuli (Wehr and Zador, 2003; Tan et al., 2004), the difference in onset delay may reflect that in the number of relays in the cortical circuit. In L4 excitatory neurons, the onset of inhibitory input is slightly later than that of excitatory input, while it is comparable with the timing of firing of inhibitory neurons in the same layer (C). Likely the L4 excitatory neurons need a longer integration time for spike generation; therefore, they spike later than nearby inhibitory neurons (D). In L6 normal-type neurons, the onset latencies of excitatory and inhibitory inputs are similar to those in L4 excitatory neurons (p > 0.5, t test), and the onset of excitation is similarly earlier than that of inhibition (D). This suggests that a similar feedforward circuit may account for the synaptic inputs to L6 normal-type neurons (D).

Compared with that of the normal-type neurons, the onset of excitatory inputs to silent-type neurons is much delayed (D). There are two plausible explanations for this observation: (1) the L6 silent-type neuron does not receive direct thalamic input, but rather receives polysynaptic excitatory input from other cortical neurons; and (2) the L6 silent-type neuron receives direct thalamic input, but it is much slower compared to that received by the normal-type neuron due to a slower axonal conduction of impulses and/or slower transmission at thalamocortical synapses. To distinguish these possibilities, we recorded excitatory responses after eliminating intracortical inputs by silencing the cortex with a cocktail of muscimol and SCH90511 (Liu et al., 2007; see Experimental Procedures). Extracellular recordings confirmed that firings of both L4 and L6 neurons were blocked after local cortical injection of the cocktail (see Figures S2A–S2C). Two types of excitatory responses were observed in the silenced cortex. Five out of fourteen neurons exhibited fairly normal excitatory TRFs (Figure 6B, top panel), indicating that these neurons received direct thalamic input. Nine neurons did not show evoked excitatory responses at all, although spontaneous synaptic currents were observed (Figure 6B, bottom panel). In the silenced cortex, the remaining excitatory responses displayed short latencies comparable to those of membrane depolarization and excitatory responses of normal-type neurons in the control cortex (Figure 6C). Excitatory responses with long latencies comparable to those of silent-type neurons were not observed in the silenced cortex (Figure 6C), indicating that the long-latency excitatory responses observed in silent-type neurons can be attributed to intracortical inputs. Based on the above results, we propose a parallel feedforward circuit for L6 silent-type neurons (Figure 6D, right), in which both the excitatory and inhibitory inputs are polysynaptically relayed from the thalamocortical projection. Because the onsets of firings of RS normal-type and FS neurons were similar to those of the excitatory and inhibitory inputs to the silent-type neurons (Figure 6A, bottom panel), it is likely that this circuit module is quadripartite, with the excitation and inhibition dysynaptically relayed by RS and FS neurons (respectively) that are directly driven by thalamic input.
Inhibitory Silencing of Layer 6 Responses

DISCUSSION

Two Distinct Classes of Excitatory Neurons in Layer 6

In this study, in vivo cell-attached recordings revealed two functionally distinct classes of excitatory neurons in L6. About 60% of recorded excitatory neurons are silent-type (i.e., do not exhibit spike TRFs under tonal stimuli), but display reduced spontaneous firing to tones within the expected RF region. The other cells (normal-type) exhibit normal spike TRFs similar to those of L4 neurons. These two classes of neurons can also be identified based on intracellular response properties, such as the level of evoked membrane depolarizations (Figure 2C), the I/E amplitude ratio and the relative synaptic latency (Figure 4E), and likely the onset latency of the excitatory input per se (Figure S1C).

Previous anatomical studies have shown that L6 neurons in the primary sensory cortices provide feedback projections almost exclusively to the thalamus, and these projections have characteristic small terminals (Ojima, 1994; Zhang and Deschênes, 1997; Prieto and Winer, 1999; Rouiller and Welker, 2000; Winer, 2005; Takayanagi and Ojima, 2006; Llano and Sherman, 2008). The main target of L6 feedback projections is the first-order thalamic nucleus, which provides ascending input to the primary sensory cortices (Gilbert and Kelly, 1975; Rouiller and Welker, 2000; Llano and Sherman, 2008). On the other hand, feedback projections from L5 target various subcortical nuclei including higher-order nuclei in the thalamus, and are characterized by giant terminals (Games and Winer, 1988; Ojima, 1994; Winer, 2005; Takayanagi and Ojima, 2006; Llano and Sherman, 2008).

It has been estimated that about 50% of L6 neurons are CT, about 30%–40% are corticocortical (these neurons have axon collaterals restricted to the infragranular laminae), and 10%–15% are GABAergic (Gilbert and Kelly, 1975; Zhang and Deschênes, 1997; Zarrinpar and Callaway, 2006; Kumar and Ohana, 2008). To further understand the nature of functionally defined L6 neurons in this study, we reconstructed cell morphologies after the in vivo recording. Interestingly, the functionally identified silent-type neurons all exhibited pyramidal cell morphology, with an apical dendrite terminating in L4. Their processes have a narrow horizontal span and they extend their processes clearly to the white matter (Figures S2D–S2F). These morphological features are characteristics of the major L6 CT neurons (Zhang and Deschênes, 1997; Zarrinpar and Callaway, 2006; Kumar and Ohana, 2008), suggesting that the silent-type neurons most likely contribute to CT projections. Our finding of silent-type neurons is reminiscent of previous reports in the cat visual and motor cortex that a fraction of L6 CT neurons do not show sensory RFs or behavior-related activity (Tsumoto and Suda, 1980; Sirotu et al., 2005).

A Reverse Temporal Sequence: Inhibition Followed by Excitation

Studies from midlayer excitatory neurons in the A1 suggested that the neurons receive approximately balanced excitatory and inhibitory inputs, as indicated by their similar frequency tunings, similar response amplitudes, a more or less stable amplitude ratio, and a stereotypic temporal relationship with...
the inhibitory input closely following the coactivated excitatory input (Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004; Wu et al., 2008). This pattern of excitation and inhibition will always result in a transient early depolarization of the membrane potential, but would not lead to a complete suppression of spike responses. For the intensity-tuned neurons located ventral-posterior to the A1, although the recruitment of excitation and inhibition is unbalanced as intensity increases, and the interval between the onsets of excitation and inhibition shortens with the intensity increase, the temporal sequence of excitation and inhibition is kept the same: inhibition follows excitation (Wu et al., 2006). In L6 of the A1, only a minority of neurons exhibit this normal temporal sequence of excitation followed by inhibition. The majority of L6 neurons exhibit a reverse temporal sequence: inhibition precedes excitation. Together with a larger amplitude of inhibition over that of excitation, tone stimuli can result in a hyperpolarization of the membrane potential, and a complete blockade of spike outputs of these neurons. Our present study has demonstrated a previously unrecognized temporal relationship between sensory-evoked excitation and inhibition. Together with the modeling results, our data suggest that by manipulating the excitatory-inhibitory interplay, diverse functional properties can be created.

Canonical versus Parallel Feedforward Circuit

The canonical microcircuit (Douglas and Martin, 1991) was proposed to account for the response profile of sensory cortical neurons to thalamic stimulation. It was found that thalamic stimulation elicited a transient depolarization followed by a long-lasting hyperpolarization in many neurons across different layers of the cortex (Douglas and Martin, 1991). The core of the canonical microcircuit is a tripartite feedforward circuit. In L4, it involves monosynaptic thalamic excitatory inputs and disynaptic feedforward inhibitory inputs from local inhibitory neurons, which are driven by the same set of thalamic inputs (Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004; Wu et al., 2008). In L6, all the neurons exhibit roughly matched excitatory and inhibitory TRFs as L4 neurons, although the BF for inhibition is slightly shifted compared with that of excitation (Figure 6D, left). Such circuit can largely account for the approximately matched excitatory and inhibitory TRFs with a larger amplitude of inhibition over that of excitation, tone stimuli can result in a hyperpolarization of the membrane potential, and a complete blockade of spike outputs of these neurons. Our present study has demonstrated a previously unrecognized functional relationship between sensory-evoked excitation and inhibition. Together with the modeling results, our data suggest that by manipulating the excitatory-inhibitory interplay, diverse functional properties can be created.

Functional Relevance of the Proposed Layer 6 Circuit Module

As the principal originators of CT feedback, L6 neurons project back predominantly to the first-order thalamic nucleus (MGBv) and form small “modulator” terminals, whereas L5 neurons project back to higher-order thalamic nuclei (MGBd and MGBm) and form giant “driver” terminals (Ojima, 1994; Prieto and Winer, 1999; Winer, 2005; Takayanagi and Ojima, 2006; Rouiller and Welker, 2000; Llano and Sherman, 2008). In general, it is thought that the reversed temporal relationship between excitation and inhibition has the largely matched excitatory and inhibitory TRFs with the reversed temporal relationship between excitation and inhibition. Such a quadripartite parallel feedforward circuit can explain the well the largely matched excitatory and inhibitory TRFs with the reversed temporal relationship between excitation and inhibition.

Inhibitory Silencing of Layer 6 Responses

The present study further demonstrates that the CT feedback is likely shut off by the strong inhibitory control of L6 silent-type neurons. These studies together address the puzzling fact that the apparent reciprocal connections made by thalamocortical and CT projections may lead to a positive feedback loop and result in unstable oscillations (Crick and Koch, 1998; Llano and Sherman, 2008).

Under what circumstances can the silent L6 CT projections be activated? One possibility is that these neurons can be activated under specifically structured complex sound that changes the balance between excitation and inhibition. To address this possibility, future studies are required to examine the dynamic properties of excitatory and inhibitory inputs. Besides that, the CT projections have been proposed to play a role in mediating conditioning-induced sound-specific plasticity in the auditory thalamus (Suga and Ma, 2003; Zhang and Yan, 2008), which suggests that the CT feedbacks can be activated during pairings of sensory stimulation and attention-related input from the nucleus basalis (NB). Recent studies also suggest that attention (Mitchell et al., 2009) and NB stimulation (Goard and Dan, 2009) can both decorrelate the local intrinsic activity in the cortex, an effect likely mediated by the muscarinic cholinergic system.
Inhibitory Silencing of Layer 6 Responses

and through inhibitory neurons in the cortex. We thus postulate that only under special circumstances, such as during conditioning, can the strong inhibitory control in L6 be relieved and the feedback loop be activated, which then allows the induction of plasticity in the thalamus.

EXPERIMENTAL PROCEDURES

Animal Preparation and Extracellular Recording

All experimental procedures used in this study were approved under the Animal Care and Use Committee at the University of Southern California. Experiments were carried out in a sound-proof booth (Acoustic Systems) as described before (Zhang et al., 2001; Tan et al., 2004; Wu et al., 2006, 2008). Female Sprague-Dawley rats (about 3 months old and weighing 250–300 g) were anesthetized with ketamine and xylazine (ketamine: 45 mg/kg; xylazine: 6.4 mg/kg; l-p) or urethane (1.5 g/kg). The auditory cortex was exposed and the ear canal on the same side was plugged. Pure tones (0.5–64 kHz at 0.1 octave intervals, 25 ms duration) were delivered through a calibrated free-field speaker facing the contralateral ear. Multiunit spikes were recorded with parylene-coated tungsten microelectrodes (2 MΩ; FHC) at 500–600 μm below the pia. Electrode signals were amplified (Plexon Inc.) and band-pass filtered between 300 and 600 Hz. Custom-made software (LabView, National Instrument) was used to extract the spike times. The number of tone-evoked spikes was counted within a window of 10–30 ms from the onset of tone stimuli. Auditory cortical mapping was carried out by sequentially recording from an array of cortical sites to identify the location and frequency representation of A1. During the mapping procedure, the cortical surface was slowly perfused with prewarmed artificial cerebrospinal fluid (ACSF; in mM: NaCl 124, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, glucose 20, CaCl2 2, MgCl2 1) to prevent it from drying.

In Vivo Whole-Cell and Cell-Attached Recordings

After mapping of A1, whole-cell recordings (Moore et al., 1999; Margrie et al., 2002; Zhang et al., 2003; Wehr and Zador, 2003; Tan et al., 2004; Wu et al., 2006, 2008) were obtained from neurons located at 1000–1350 μm below the pia, corresponding to L6 of the auditory cortex (Winer et al., 2001, 2005; Kaur et al., 2005; Lakatos et al., 2007; Llano and Sherman, 2008). This was further confirmed in several experiments with current source density map and nissl staining. We used agar (4%) to minimize cortical pulsation. For injection volumes, we estimated around 50–100 nl, as measured with mineral oil. The staining by Fast Green was monitored under the surgical microscope, which covered a cortical area with a radius of ~1 mm by the end of the injection.

Data Analysis

Synaptic Conductances

Excitatory and inhibitory synaptic conductances were derived according to Borg-Graham et al. (1998), Anderson et al. (2000), Zhang et al. (2003), Wehr and Zador (2003), and Wu et al. (2006);

\[
I(t) = G_e(V(t) - E_e) + G_i(V(t) - E_i) + G_h(V(t) - E_h) + G_r(V(t) - E_r).
\]

\(I(t)\) is the amplitude of synaptic current at any time point, \(G_e\) and \(E_e\) are the resting conductance and resting membrane potential, which were derived from the baseline current of each recording, \(G_i\) and \(E_i\) are the excitatory and inhibitory synaptic conductance, respectively. \(V\) is the holding voltage, and \(E_h\) and \(E_i\) are the reversal potentials. In this study, a corrected clamping voltage was used, instead of the holding voltage applied (\(V_h\)). \(V(t)\) is corrected by \(V(t) = V_h - R_s*\text{df}(t)\), where \(R_s\) was the effective series resistance. A 10 mV junction potential was corrected. By holding the recorded cell at two different voltages, \(G_e\) and \(G_i\) were calculated from the equation. \(G_e\) and \(G_i\) reflect the strength of pure excitatory and inhibitory synaptic inputs, respectively. Under holding potentials of ~80 mV, activation of NMDA receptors could be ignored (Jahr and Stevens, 1990a, 1990b, 1996). Thus the recorded tone-evoked synaptic currents were primarily mediated by AMPA and GABA\(_A\) receptors.

Tone-Evoked Responses

Spike Responses

With cell-attached recording, spikes can be detected without ambiguity because their amplitudes are normally higher than 100 pA, while the baseline fluctuation is less than 5 pA. Tone-driven spikes were identified within a 10–30 ms time window after the onset of the tone stimulus. The spike response latency was defined as the lag between the stimulus onset and the negative peak for the first evoked spike. The onset latency of spike responses for a cell was then chosen as the value at 5% position of the cumulative histogram of all the response latencies.

Synaptic Responses

These responses were identified according to their onset latencies and peak amplitudes. All the response traces evoked by the same test stimulus were averaged, and the onset latency of this average trace was identified at the time point in the rising phase of the response wave form, where the amplitude was larger than 3 folds of standard deviation of the baseline. Only responses with onset latencies within 7–30 ms from the onset of tone stimulus were considered in this study.
Inhibitory Silencing of Layer 6 Responses

Inhibitory Silencing of Layer 6 Responses

