Computational Neuroscience: Vision

Course Introduction
+ Linear Systems
Model Types
Model Types

• Descriptive (what?)
Model Types

- Descriptive (what?)
 - eg: tuning curves, receptive field, LNP
Model Types

• Descriptive (what?)
 • eg: tuning curves, receptive field, LNP

• Mechanistic (how?)
Model Types

• Descriptive (what?)
 • eg: tuning curves, receptive field, LNP

• Mechanistic (how?)
 • eg: compartmental models, Hodgkin-Huxley
Model Types

• Descriptive (what?)
 • eg: tuning curves, receptive field, LNP

• Mechanistic (how?)
 • eg: compartmental models, Hodgkin-Huxley

• Interpretive/Explanatory (why?)
Model Types

• Descriptive (what?)
 • eg: tuning curves, receptive field, LNP

• Mechanistic (how?)
 • eg: compartmental models, Hodgkin-Huxley

• Interpretive/Explanatory (why?)
 • eg: efficient coding, optimal estimation/decision, wiring length, metabolic cost, etc
Interaction with Experiments
Interaction with Experiments

• Fit existing data
Interaction with Experiments

• Fit existing data
• Make predictions...
Interaction with Experiments

• Fit existing data
• Make predictions...
 - for other neurons, under other conditions
Interaction with Experiments

• Fit existing data
• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
 - that can be tested with new experiments
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
 - that can be tested with new experiments

• Develop new experiments...
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
 - that can be tested with new experiments

• Develop new experiments...
 - to refine model
Interaction with Experiments

• Fit existing data

• Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
 - that can be tested with new experiments

• Develop new experiments...
 - to refine model
 - to differentiate models
Interaction with Experiments

- Fit existing data
- Make predictions...
 - for other neurons, under other conditions
 - of mechanisms not yet understood (e.g., HH)
 - of behavior
 - in other animals/species
 - that can be tested with new experiments
- Develop new experiments...
 - to refine model
 - to differentiate models
 - with optimized stimuli
Simple is good
Simple is good

• Curse of dimensionality
Simple is good

• Curse of dimensionality

• Occam’s Razor
Simple is good

• Curse of dimensionality

• Occam’s Razor

• Linearity...
Linear Systems
Linear Systems

• Extremely well understood
Linear Systems

- Extremely well understood
- Excellent design/characterization toolbox
Linear Systems

- Extremely well understood
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
Linear Systems

- Extremely well understood
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- But are still useful:
 - conceptualization of fundamental issues
 - provide baseline performance (often remarkably good)
 - starting point for more complex model
Quick overview of
Linear Systems Theory

(on the board)