Part 2: Coding Natural Images
A general approach to coding: redundancy reduction

Redundancy reduction is equivalent to efficient coding.

image from Field (1994)
Reducing pixel redundancy

Lena: a standard 8 bit 256x256 gray scale image

histogram of pixel values
Entropy = 7.57 bits

from Daugman (1990)
2D Gabor wavelet captures spatial structure

- 2D Gabor functions
- Wavelet basis generated by dilations, translations, and rotations of a single basis function
- Can also control phase and aspect ratio
- (drifting) Gabor functions are what the eye “sees best”
Recoding with Gabor functions

Pixel entropy = 7.57 bits

Recoding with 2D Gabor functions
Coefficient entropy = 2.55 bits
Describing signals with a simple statistical model

Principle

Good codes capture the statistical distribution of sensory patterns.

How do we describe the distribution?

- Goal is to encode the data to desired precision

\[
x = \vec{a}_1 s_1 + \vec{a}_2 s_2 + \cdots + \vec{a}_L s_L + \vec{\epsilon}
= A\mathbf{s} + \epsilon
\]

- Can solve for the coefficients in the no noise case

\[
\hat{s} = A^{-1}x
\]
An algorithm for deriving efficient linear codes: ICA

Learning objective:

maximize coding efficiency

⇒ maximize $P(x|A)$ over A.

Probability of the pattern ensemble is:

$$P(x_1, x_2, ..., x_N|A) = \prod_k P(x_k|A)$$

To obtain $P(x|A)$ marginalize over s:

$$P(x|A) = \int ds P(x|A, s) P(s)$$

$$= \frac{P(s)}{|\text{det } A|}$$

Using independent component analysis (ICA) to optimize A:

$$\Delta A \propto A A^T \frac{\partial}{\partial A} \log P(x|A)$$

$$= -A (zs^T - I)$$

where $z = (\log P(s))^\prime$.

This learning rule:

• learns the features that capture the most structure

• optimizes the efficiency of the code

What should we use for $P(s)$?
Modeling Non-Gaussian distributions

- Typical coeff. distributions of natural signals are non-Gaussian.
The generalized Gaussian distribution

\[P(x|q) \propto \exp\left(-\frac{1}{2} |x|^q \right) \]

• Or equivalently, and exponential power distribution (Box and Tiao, 1973):

\[P(x|\mu, \sigma, \beta) = \frac{\omega(\beta)}{\sigma} \exp\left[-c(\beta) \left| \frac{x - \mu}{\sigma} \right|^\frac{2}{1+\beta} \right] \]

• \(\beta \) varies monotonically with the kurtosis, \(\gamma_2 \):

\(\beta = -0.75 \quad \gamma_2 = -1.08 \)

\(\beta = -0.25 \quad \gamma_2 = -0.45 \)

\(\beta = +0.00 \) (Normal) \(\gamma_2 = +0.00 \)

\(\beta = +0.50 \) (ICA tanh) \(\gamma_2 = +1.21 \)

\(\beta = +1.00 \) (Laplacian) \(\gamma_2 = +3.00 \)

\(\beta = +2.00 \quad \gamma_2 = +9.26 \)
Modeling Gaussian distributions with PCA

• Principal component analysis (PCA) describes the principal axes of variation in the data distribution.

• This is equivalent to fitting the data with a multivariate Gaussian.
Modeling non-Gaussian distributions

• What about non-Gaussian marginals?

• How would this distribution be modeled by PCA?
Modeling non-Gaussian distributions

- What about non-Gaussian marginals?

- How would this distribution be modeled by PCA?

- How should the distribution be described?

The non-orthogonal ICA solution captures the non-Gaussian structure
Efficient coding of natural images

Network weights are adapted to maximize coding efficiency: minimizes redundancy and maximizes the independence of the outputs.
Model predicts local and global receptive field properties

Learned basis for natural images

Overlaid basis function properties

from Lewicki and Olshausen, 1999
Algorithm selects best of many possible sensory codes

Learned
Wavelet
Haar
Gabor
Fourier
PCA

Theoretical perspective: Not edge “detectors.”
An efficient code for natural images.

from Lewicki and Olshausen, 1999
2D Receptive fields in primary visual cortex

Fit of 2D Gabor wavelet is indistinguishable from noise.

figure from Daugman, 1990
data from Jones and Palmer, 1987
Comparing coding efficiency on natural images

estimated bits per pixel

Gabor wavelet Haar Fourier PCA learned
Comparing efficiency estimates using entropy and probability

- Entropy estimate ignores fidelity

- Estimates based on $P(x/A)$
Optimality depends on data

Which code will be best for random, sparse pixels?
Now the coding efficiencies are reversed.

The pixel basis is now optimal.
Responses in primary visual cortex to visual motion

from Wandell, 1995
Sparse coding of time-varying images (Olshausen, 2002)

\[I(x, y, t) = \sum_i \sum_{t'} a_i(t') \phi_i(x, y, t - t') + \epsilon(x, y, t) \]

\[= \sum_i a_i(t) \ast \phi_i(x, y, t) + \epsilon(x, y, t) \]
Sparse decomposition of image sequences

convolution

posterior maximum

reconstruction

input sequence

from Olshausen, 2002
Learned spatio-temporal basis functions

from Olshausen, 2002
Animated spatial-temporal basis functions

from Olshausen, 2002
Coding audio signals with spikes
Kernel functions are initialized to random vectors
Adapting the optimal kernel shapes
Kernel functions optimized for coding speech
Learned kernels share features of auditory nerve filters

Auditory nerve filters
from Carney, McDuffy, and Shekhter, 1999

Optimized kernels
scale bar = 1 msec
Learned kernels closely match individual auditory nerve filters

for each kernel find closest matching auditory nerve filter in Laurel Carney’s database of ~100 filters.
Learned kernels overlaid on selected auditory nerve filters

For almost all learned kernels there is a closely matching auditory nerve filter.

from Smith and Lewicki (2006)
Redundancy reduction for noisy channels (Atick, 1992)

\[y = Ax + \nu \]

Mutual information

\[I(x, s) = \sum_{s,x} P(x, s) \log_2 \left(\frac{P(x, s)}{P(s)P(x)} \right) \]

\[I(x, s) = 0 \text{ iff } P(x, s) = P(x)P(s), \text{ i.e. } x \text{ and } s \text{ are independent.} \]
A second order statistical model: Gaussian

- To calculate $I(x,s)$, we need $P(s)$, $P(x)$, and $P(x,s)$
- Assume it is sufficient to measure 2nd order correlations
 (this is equivalent to measuring the avg. spatial frequency):

\[
\langle s[n]s[m] \rangle = R_0[n,m] \\
\langle x[n]x[m] \rangle = R_0[n,m] + N^2 \delta_{n,m} \equiv R[n,m] \\
\langle x[n]s[m] \rangle = \langle s[n]s[m] \rangle
\]

for $u = s, x, y$ and $R_{uu}[n, m] \equiv \langle u[n]u[m] \rangle$.

\[
P(u) = \left[(2\pi)^d \det(R_{uu}) \right]^{-1/2} \exp \left[-\frac{1}{2} \sum_{n,m} (u[n] - \bar{u}) R_{uu}^{-1}[n, m](u[m] - \bar{u}) \right] \\
= \mathcal{N}(\bar{u}, R_{uu})
\]
Mutual information between stages of the model

Mutual information depends on noise and correlations

Increasing noise \Rightarrow decreasing mutual information

Can derive the optimal A for different signal to noise ratios.

\[
I(x, s) = \frac{1}{2} \left[\frac{\det(R_0 + N^2)}{\det N^2} \right]
\]

\[
I(y, s) = \frac{1}{2} \left[\frac{\det(A(R_0 + N^2)A^T + N_\delta^2)}{\det(AN^2A^T + N_\delta^2)} \right]
\]
ID profile of optimal filters

- high SNR
 - reduce redundancy
 - center-surround structure

- low SNR
 - average
 - low-pass filter

- matches behavior of retinal ganglion cells
An observation: Contrast sensitivity of ganglion cells

Luminance level decreases one log unit each time we go to lower curve.

What is happening at low luminance levels?
Natural images have a $1/f^2$ power spectrum

- Field 1987
 - amplitude spectra for 6 images (shifted for clarity)
 - power spectra fall off as $1/f^2$
 - Fourier coefficients fall off as $1/f$

- How does this reflect the correlated structure of natural images?
- What would an uncorrelated structure look like?
- What transformation would yield a more efficient code?
Components of predicted filters

The predicted form of the optimal filter (A), is a combination of a low-pass filter (B) plus a whitening filter (C).
Predicted contrast sensitivity functions match neural data

from Atick, 1992