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Characterizing the complete input-output properties of a system by exhaustive measure-

ment is usually impossible. Instead, we must �nd some way of making a �nite number of

measurements that allow us to infer how the system will respond to other inputs that we

have not yet measured. We can only do this for certain kinds of systems with certain prop-

erties. If we have the right kind of system, we can save a lot of time and energy by using

the appropriate theory about the system's responsiveness. Linear systems theory is a good

time-saving theory for linear systems which obey certain rules. Not all systems are linear,

but many important ones are. When a system quali�es as a linear system, it is possible to

use the responses to a small set of inputs to predict the response to any possible input. This

can save the scientist enormous amounts of work, and makes it possible to characterize the

system completely.

To get an idea of what linear systems theory is good for, consider some of the things in

neuroscience that can be successfully modeled (at least, approximately) as shift-invariant,

linear systems:

System Input Output

passive neural membrane injected current membrane potential

synapse pre-synaptic action potentials post-synaptic conductance

cochlea sound cochlear microphonic

optics of the eye visual stimulus retinal image

retinal ganglion cell stimulus contrast �ring rate

human pairs of color patches color match settings

In addition, a number of neural systems can be approximated as linear systems coupled

with simple nonlinearities (e.g., a spike threshold).

The aim of these notes is to clarify the meaning of the phrase: \The e�ect of any shift-

invariant linear system on an arbitrary input signal is obtained by convolving the input signal

with the system's impulse response function."

Most of the e�ort is simply de�nitional - you have to learn the meaning of technical

terms such as \linear", \convolve", and so forth. We will also introduce some convenient

mathematical notation, and we will describe two di�erent approaches for measuring the

system's impulse response function.
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For more detailed introductions to the material covered in this handout, see Oppenheim,

Wilsky, and Young (1983), and Oppenheim and Schafer (1989).

Continuous-Time and Discrete-Time Signals

In each of the above examples there is an input and an output, each of which is a time-

varying signal. We will treat a signal as a time-varying function, x(t). For each time t, the

signal has some value x(t), usually called \x of t." Sometimes we will alternatively use x(t)

to refer to the entire signal x, thinking of t as a free variable.

In practice, x(t) will usually be represented as a �nite-length sequence of numbers, x[n],

in which n can take integer values between 0 and N � 1, and where N is the length of the

sequence. This discrete-time sequence is indexed by integers, so we take x[n] to mean \the

nth number in sequence x," usually called \x of n" for short.

The individual numbers in a sequence x[n] are called samples of the signal x(t). The

word \sample" comes from the fact that the sequence is a discretely-sampled version of

the continuous signal. Imagine, for example, that you are measuring membrane potential

(or just about anything else, for that matter) as it varies over time. You will obtain a

sequence of measurements sampled at evenly spaced time intervals. Although the membrane

potential varies continuously over time, you will work just with the sequence of discrete-time

measurements.

It is often mathematically convenient to work with continuous-time signals. But in

practice, you usually end up with discrete-time sequences because: (1) discrete-time samples

are the only things that can be measured and recorded when doing a real experiment; and (2)

�nite-length, discrete-time sequences are the only things that can be stored and computed

with computers.

In what follows, we will express most of the mathematics in the continuous-time domain.

But the examples will, by necessity, use discrete-time sequences.

Pulse and impulse signals. The unit impulse signal, written �(t), is one at t = 0,

and zero everywhere else:

�(t) =

(
1 if t = 0

0 otherwise

The impulse signal will play a very important role in what follows.

One very useful way to think of the impulse signal is as a limiting case of the pulse signal,

��(t):

��(t) =

(
1
�

if 0 < t < �

0 otherwise
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The impulse signal is equal to the pulse signal when the pulse gets in�nitely short:

�(t) = lim
�!0

��(t)�:

Unit step signal. The unit step signal, written u(t), is zero for all times less than

zero, and 1 for all times greater than or equal to zero:

u(t) =

(
0 if t < 0

1 if t � 0

Summation and integration. The Greek capital sigma,
P
, is used as a shorthand

notation for adding up a set of numbers, typically having some variable take on a speci�ed

set of values. Thus:
5X

i=1

i = 1 + 2 + 3 + 4 + 5

The
P

notation is particularly helpful in dealing with sums over discrete-time sequences:

3X
n=1

x[n] = x[1] + x[2] + x[3]:

An integral is the limiting case of a summation:

Z
1

t=�1
x(t)dt = lim

�!0

1X
k=�1

x(k�)�

For example, the step signal can be obtained as an integral of the impulse:

u(t) =
Z t

s=�1
�(s)ds:

Up to s < 0 the sum will be 0 since all the values of �(s) for negative s are 0. At t = 0 the

cumulative sum jumps to 1 since �(0) = 1. And the cumulative sum stays at 1 for all values

of t greater than 0 since all the rest of the values of �(t) are 0 again.

This is not a particularly impressive use of an integral, but it should help to remind you

that it is perfectly sensible to talk about in�nite sums.

Arithmetic with signals. It is often useful to apply the ordinary operations of arith-

metic to signals. Thus we can write the product of signals x and y as z = xy, meaning the

signal made up of the products of the corresponding elements:

z(t) = x(t) y(t)

Likewise the sum of signals x and y can be written z = x + y. A signal x can be multiplied

by a scalar �, meaning that each element of x is individually so multiplied. Finally, a signal

may be shifted by any amount:

z(t) = x(t� s):
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Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled

and shifted unit impulses. We begin with the pulse or \staircase" approximation ~x(t) to a

continuous signal x(t), as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete

sample of the original signal, we make a pulse signal. Then we add up all these pulse signals

to make up the approximate signal. Each of these pulse signals can in turn be represented

as a standard pulse scaled by the appropriate value and shifted to the appropriate place. In

mathematical notation:

~x(t) =
1X

k=�1

x(k�) ��(t� k�)�:

As we let � approach zero, the approximation ~x(t) becomes better and better, and the in

the limit equals x(t). Therefore,

x(t) = lim
�!0

1X
k=�1

x(k�) ��(t� k�)�:

Also, as � ! 0, the summation approaches an integral, and the pulse approaches the unit

impulse:

x(t) =
Z
1

�1

x(s) �(t� s) ds: (1)

In other words, we can represent any signal as an in�nite sum of shifted and scaled unit

impulses. A digital compact disc, for example, stores whole complex pieces of music as lots

of simple numbers representing very short impulses, and then the CD player adds all the

impulses back together one after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that

we originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform

a marvelous trick.

Linear Systems

A system or transform maps an input signal x(t) into an output signal y(t):

y(t) = T [x(t)];

where T denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems.

To see whether a system is linear, we need to test whether it obeys certain rules that all

linear systems obey. The two basic tests of linearity are homogeneity and additivity.
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Homogeneity. As we increase the strength of the input to a linear system, say we

double it, then we predict that the output function will also be doubled. For example, if the

current injected to a passive neural membrane is doubled, the resulting membrane potential

uctuations will double as well. This is called the scalar rule or sometimes the homogeneity

of linear systems.

Additivity. Suppose we we measure how the membrane potential uctuates over time

in response to a complicated time-series of injected current x1(t). Next, we present a second

(di�erent) complicated time-series x2(t). The second stimulus also generates uctuations in

the membrane potential which we measure and write down. Then, we present the sum of the

two currents x1(t) + x2(t) and see what happens. Since the system is linear, the measured

membrane potential uctuations will be just the sum of the uctuations to each of the two

currents presented separately.

Superposition. Systems that satisfy both homogeneity and additivity are considered

to be linear systems. These two rules, taken together, are often referred to as the principle

of superposition. Mathematically, the principle of superposition is expressed as:

T (�x1 + �x2) = �T (x1) + �T (x2) (2)

Homogeneity is a special case in which one of the signals is absent. Additivity is a special

case in which � = � = 1.

Shift-invariance. Suppose that we inject a pulse of current and measure the membrane

potential uctuations. Then we stimulate again with a similar pulse at a di�erent point in

time, and again we measure the membrane potential uctuations. If we haven't damaged

the membrane with the �rst impulse then we should expect that the response to the second

pulse will be the same as the response to the �rst pulse. The only di�erence between

them will be that the second pulse has occurred later in time, that is, it is shifted in time.

When the responses to the identical stimulus presented shifted in time are the same, except

for the corresponding shift in time, then we have a special kind of linear system called a

shift-invariant linear system. Just as not all systems are linear, not all linear systems are

shift-invariant.

In mathematical language, a system T is shift-invariant if and only if:

y(t) = T [x(t)] implies y(t� s) = T [x(t� s)] (3)

Convolution

Homogeneity, additivity, and shift invariance may, at �rst, sound a bit abstract but they are

very useful. To characterize a shift-invariant linear system, we need to measure only one
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Impulses
Impulse ResponseImpulse

Each Impulse Creates a
Scaled and Shifted Impulse Response

For
example

The sum of all the impulse responses
is the final system response

Figure 2: Characterizing a linear system using its impulse response.

thing: the way the system responds to a unit impulse. This response is called the impulse

response function of the system. Once we've measured this function, we can (in principle)

predict how the system will respond to any other possible stimulus.

The way we use the impulse response function is illustrated in Fig. 2. We conceive of

the input stimulus, in this case a sinusoid, as if it were the sum of a set of impulses (Eq. 1).

We know the responses we would get if each impulse was presented separately (i.e., scaled

and shifted copies of the impulse response). We simply add together all of the (scaled and

shifted) impulse responses to predict how the system will respond to the complete stimulus.

Now we will repeat all this in mathematical notation. Our goal is to show that the

response (e.g., membrane potential uctuation) of a shift-invariant linear system (e.g., passive

neural membrane) can be written as a sum of scaled and shifted copies of the system's impulse

response function.

The convolution integral. Begin by using Eq. 1 to replace the input signal x(t) by

its representation in terms of impulses:

y(t) = T [x(t)] = T

�Z
1

�1

x(s) �(t� s) ds

�

= T

2
4 lim
�!0

1X
k=�1

x(k�) ��(t� k�)�

3
5 :
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Using additivity,

y(t) = lim
�!0

1X
k=�1

T [x(k�) ��(t� k�)�]:

Taking the limit,

y(t) =
Z
1

�1

T [x(s) �(t� s) ds]:

Using homogeneity,

y(t) =
Z
1

�1

x(s)T [�(t� s)] ds:

Now let h(t) be the response of T to the unshifted unit impulse, i.e., h(t) = T [�(t)]. Then

by using shift-invariance,

y(t) =
Z
1

�1

x(s) h(t� s) ds: (4)

Notice what this last equation means. For any shift-invariant linear system T , once we know

its impulse response h(t) (that is, its response to a unit impulse), we can forget about T

entirely, and just add up scaled and shifted copies of h(t) to calculate the response of T to

any input whatsoever. Thus any shift-invariant linear system is completely characterized by

its impulse response h(t).

The way of combining two signals speci�ed by Eq. 4 is know as convolution. It is such a

widespread and useful formula that it has its own shorthand notation, �. For any two signals
x and y, there will be another signal z obtained by convolving x with y,

z(t) = x � y =
Z
1

�1

x(s) y(t� s) ds:

Convolution as a series of weighted sums. While superposition and convolution

may sound a little abstract, there is an equivalent statement that will make it concrete: a

system is a shift-invariant, linear system if and only if the responses are a weighted sum of

the inputs. Figure 3 shows an example: the output at each point in time is computed simply

as a weighted sum of the inputs at recently past times. The choice of weighting function

determines the behavior of the system. Not surprisingly, the weighting function is very

closely related to the impulse response of the system. In particular, the impulse response

and the weighting function are time-reversed copies of one another, as demonstrated in the

top part of the �gure.

Properties of convolution. The following things are true for convolution in general,

as you should be able to verify for yourself with some algebraic manipulation:

x � y = y � x commutative

(x � y) � z = x � (y � z) associative

(x � z) + (y � z) = (x+ y) � z distributive
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past present future

input (impulse)

output (impulse response)

input (step)

output (step response)

0     0     0   1/2  1/4  1/8    0     0     0

0     0     0     1     0     0     0     0     0

0     0     0     1     1     1     1     1     1

0     0     0   1/2  3/4  7/8   7/8  7/8  7/8

weights1/8  1/4  1/2

1/8  1/4  1/2 weights

Figure 3: Convolution as a series of weighted sums.

Frequency Response

Sinusoidal signals. Sinusoidal signals have a special relationship to shift-invariant

linear systems. A sinusoid is a regular, repeating curve, that oscillates above and below

zero. The sinusoid has a zero-value at time zero. The cosinusoid is a shifted version of the

sinusoid; it has a value of one at time zero.

The sine wave repeats itself regularly, and the distance from one peak of the wave to the

next peak is called the wavelength or period of the sinusoid and generally indicated by the

greek letter �. The inverse of wavelength is frequency: the number of peaks in the signal that

arrive per second. The units for the frequency of a sine-wave are hertz, named after a famous

19th century physicist, who was a student of Helmholtz. The longer the wavelength, the

shorter the frequency; knowing one we can infer the other. Apart from frequency, sinusoids

also have various amplitudes, which represent the distance between how high their energy

gets at the peak of the wave and how low it gets at the trough. Thus, we can describe a sine

wave completely by its frequency and by its amplitude.

The mathematical expression of a sinusoidal signal is:

A sin(2�!t);

where A is the amplitude and ! is the frequency (in Hz). As the value of the amplitude,

A, increases the height of the sinusoid increases. As the frequency, !, increases, the spacing

between the peaks becomes smaller.

Fourier Transform. Just as we can express any signal as the sum of a series of shifted

and scaled impulses, so too we can express any signal as the sum of a series of (shifted and

scaled) sinusoids at di�erent frequencies. This is called the Fourier expansion of the signal.

An example is shown in Fig. 4.

The equation describing the Fourier expansion works as follows:

x(t) =
Z
1

0
A! sin(2�!t+ �!)d! (5)
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Figure 4: Fourier series approximation of a squarewave as the sum of sinusoids.

where ! is the frequency of each sinusoid, and A! and �! are the amplitude and phase,

respectively, of each sinusoid. You can go both ways. If you know the coe�cients, A!

and �!, you can use this formula to reconstruct the original signal x(t). If you know the

signal, you can compute the coe�cients by a method called the Fourier transform, a way of

decomposing a complex stimulus into its component sinusoids (see Appendix II).

Example: Stereos as shift-invariant systems. Many people �nd the characteriza-

tion in terms of frequency response to be intuitive. And most of you have seen graphs that

describe performance this way. Stereo systems, for example, are pretty good shift-invariant

linear systems. They can be evaluated by measuring the signal at di�erent frequencies. And

the stereo controls are designed around the frequency representation. Adjusting the bass

alters the level of the low frequency components, while adjusting the treble alters the level of

the high frequency components. Equalizers divide up the signal band into many frequencies

and give you �ner control.

Shift-invariant linear systems and sinusoids. The Fourier decomposition is impor-

tant because if we know the response of the system to sinusoids at many di�erent frequencies,

then we can use the same kind of trick we used with impulses to predict the response via

the impulse response function. First, we measure the system's response to sinusoids of all

di�erent frequencies. Next, we take our input (e.g., time-varying current) and use the Fourier

transform to compute the values of the Fourier coe�cients. At this point the input has been

broken down as the sum of its component sinusoids. Finally, we can predict the system's

response (e.g., membrane potential uctuations) simply by adding the responses for all the
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Shift-Invariant Linear Systems and Sinusoids

Sinusoidal
 Inputs

Scaled and Shifted
sinusoidal outputs

frequency
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g
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x
x

x

Frequency Description
of the system

Figure 5: Characterizing a system using its frequency response.

component sinusoids.

Why bother with sinusoids when we were doing just �ne with impulses? The reason

is that sinusoids have a very special relationship to shift-invariant linear systems. When

we use a sinusoids as the inputs to a shift-invariant linear system, the system's responses

are always (shifted and scaled) copies of the input sinusoids. That is, when the input is

x(t) = sin(2�!t) the output is always of the form y(t) = A! sin(2�!t + �!), with the same

frequency as the input. Here, �! determines the amount of shift and A! determines the

amount of scaling. Thus, measuring the response to a sinusoid for a shift-invariant linear

system entails measuring only two numbers: the shift and the scale. This makes the job of

measuring the response to sinusoids at many di�erent frequencies quite practical.

Often then, when scientists characterize the response of a system they will not tell you

the impulse response. Rather, they will give you the frequency response, the values of the

shift and scale for each of the possible input frequencies (Fig. 5). This frequency response

representation of how the shift-invariant linear system behaves is equivalent to providing you

with the impulse response function (in fact, the two are Fourier transforms of one another).

We can use either to compute the response to any input. This is the main point of all this

stu�: a simple, fast, economical way to measure the responsiveness of complex systems. If

you know the coe�cients of response for sine waves at all possible frequencies, then you can

determine how the system will respond to any possible input.

Linear �lters. Shift-invariant linear systems are often referred to as linear �lters be-

cause they typically attenuate (�lter out) some frequency components while keeping others
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Linear Systems Logic

Input
Stimulus

Frequency
method

Space/time
method

Measure the
impulse response

Measure the
sinusoidal responses

Express as sum
of

scaled and shifted
sinusoids

Calculate 
the response

to each sinusoid

Sum the sinusoidal
responses to determine

 the output

Express as sum
of

scaled and shifted
impulses

Calculate 
the response

to each impulse

Sum the impulse
responses to determine

the output

Figure 6: Alternative methods of characterizing a linear system.

intact.

For example, since a passive neural membrane is a shift invariant linear system, we know

that injecting sinusoidally modulating current yields membrane potential uctuations that

are sinusoidal with the same frequency (sinusoid in, sinusoid out). The amplitude and phase

of the output sinusoid depends on the choice of frequency relative to the properties of the

membrane. The membrane essentially averages the input current over a period of time. For

very low frequencies (slowly varying current), this averaging is irrelevant and the membrane

potential uctuations follow the injected current. For high frequencies, however, even a large

amplitude sinusoidal current modulation will yield no membrane potential uctuations. The

membrane is called a low-pass �lter: it lets low frequencies pass, but because of its time-

averaging behavior, it attenuates high frequencies.

Figure 7 shows an example of a band-pass �lter. When the frequency of a sinusoidal

input matches the periodicity of the linear system's weighting function the output sinusoid

has a large amplitude. When the frequency of the input is either too high or too low, the

output sinusoid is attenuated.

Shift-invariant linear systems are often depicted with block diagrams, like those shown

in Fig. 8. Fig. 8A depicts a simple linear �lter with frequency response ĥ(!). The equations

that go with the block diagram are:

y(t) = h(t) � x(t)
ŷ(!) = ĥ(!)x̂(!)

The �rst of these equations is the now familiar convolution formula in which x(t) is the input
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Figure 7: Illustration of an idealized, retinal ganglion-cell receptive �eld that acts like

a bandpass �lter (redrawn from Wandell, 1995). This linear on-center neuron responds

best to an intermediate spatial frequency whose bright bars fall on-center and whose dark

bars fall over the opposing surround. When the spatial frequency is low, the center and

surround oppose one another because both are stimulated by a bright bar, thus diminishing

the response. When the spatial frequency is high, bright and dark bars fall within and are

averaged by the center (likewise in the surround), again diminishing the response.

f(ω)

x(ω) y(ω)+

x(ω) y(ω)h(ω)

y  (ω)N

y  (ω)1

y  (ω)2x(ω)

h  (ω)1

h  (ω)2

h  (ω)N

:A

B

C

Figure 8: Block diagrams of linear �lters. A: Linear �lter with frequency response ĥ(!).

B: Bank of linear �lters with di�erent frequency responses. C: Feedback linear system.
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signal, y(t) is the output signal, and h(t) is the impulse response of the linear �lter. The

second equation (derived in Appendix II) says the same thing, but expressed in the Fourier

domain: x̂(!) is the Fourier transform of the input signal, ŷ(!) is the Fourier transform of

the output signal, and ĥ(!) is the frequency response of the linear �lter (that is, the Fourier

transform of the impulse response). At the risk of confusing you, it is important to note

that x̂(!), ŷ(!), and ĥ(!) are complex-valued functions of frequency. The complex number

notation makes it easy to denote both the amplitude/scale and phase/shift of each frequency

component (see Appendix I for a quick review of complex numbers). We can also write out

the amplitude and phase parts separately:

amplitude[ŷ(!)] = amplitude[ĥ(!)] amplitude[x̂(!)]

phase[ŷ(!)] = phase[ĥ(!)] + phase[x̂(!)]

For an input sinusoid of frequency !, the output is a sinusoid of the same frequency, scaled

by amplitude[x̂(!)] and it is shifted by phase[x̂(!)].

Fig. 8B depicts a bank of linear �lters that all receive the same input signal. For ex-

ample, they might be spatially-oriented linear neurons (like V1 simple cells) with di�erent

orientation preferences.

Linear Feedback and IIR Filters

Fig. 8C depicts a linear feedback system. The equation corresponding to this diagram is:

y(t) = x(t) + f(t) � y(t): (6)

Note that because of the feedback, the output y(t) appears on both sides of the equation.

The frequency response of the feedback �lter is denoted by f̂(!), but the behavior of the

entire linear system can be expressed as:

ŷ(!) = x̂(!) + f̂(!) ŷ(!):

Solving for ŷ(!) in this expression gives:

ŷ(!) = ĥ(!)x̂(!) =
x̂(!)

1� f̂(!)
;

where ĥ(!) = 1=[1 � f̂(!)] is the e�ective frequency response of the entire linear feedback

system. Using a linear feedback �lter with frequency response f̂(!) is equivalent to using a

linear feedforward �lter with frequency response ĥ(!).

There is one additional subtle, but important, point about this linear feedback system. A

system is called causal or nonanticipatory if the output at any time depends only on values

of the input at the present time and in the past. For example, the systems y(t) = x(t � 1)

and y(t) = x
2(t) are causal, but the system y(t) = x(t + 1) is not causal. Note that not

all causal systems are linear and that not all linear systems are causal (look for examples of

each in the previous sentence).
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For Eq. 6 to make sense, the �lter f(t) must be causal so that the output at time t depends

on the input at time t plus a convolution with past outputs. For example, if f(t) = 1
2
�(t�1)

then:

y(t) = x(t) + 1
2
�(t� 1) � y(t) = x(t) + 1

2
y(t� 1):

The output y(t) accumulates the scaled input values at 1 sec time intervals:

y(t) = x(t) + 1
2
x(t� 1) + 1

4
x(t� 2) + : : : :

Linear feedback systems like this are often referred to as in�nite impulse response or IIR

linear �lters, because the output depends on the full past history of the input. In practice,

of course, the response of this system attenuates rather quickly over time; A unit impulse

input from ten seconds in the past contributes only 2�10 to the present response.

Di�erential Equations as Linear Systems

Di�erentiation is a shift-invariant linear operation. Let y(t) = d
dt
x(t), and let's check the

three conditions for a shift-invariant linear system:

� Shift-invariance: d

dt
[x(t� s)] = y(t� s).

� Homogeneity: d

dt
[�x(t)] = �y(t).

� Additivity: d
dt
[x1(t) + x2(t)] = y1(t) + y2(t).

In principle, then, we could try to express di�erentiation as convolution:

y(t) = d(t) � x(t);

where d(t) is the \impulse response" of the di�erentiation operation. But this is weird

because the derivative of an impulse is unde�ned.

On the other hand, the frequency response of di�erentiation makes perfect sense and

it is often very useful to think about the di�erentiation operation in the Fourier domain.

Di�erentiating a sinusoid,
d

dt
sin(2�!t) = 2�! cos(2�!t);

produces another sinusoid that is scaled by 2�! and shifted by �=2. So the frequency

response d̂(!) of di�erentiation is:

amplitude[d̂(!)] = 2�!

phase[d̂(!)] = �=2;

And we can express di�erentiation as multiplication in the Fourier domain:

ŷ(!) = d̂(!)x̂(!):
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Writing the amplitude and phase parts separately gives:

amplitude[ŷ(!)] = amplitude[d̂(!)] amplitude[x̂(!)] = 2�! amplitude[x̂(!)]

phase[ŷ(!)] = phase[d̂(!)] + phase[x̂(!)] = (�=2) + phase[x̂(!)]:

Now consider the behavior of the following �rst-order, linear, di�erential equation:

d
dt
y(t) = �y(t) + x(t): (7)

The equation for a passive neural membrane, for example, can be expressed in this form.

There are two operations in this equation: di�erentiation and addition. Since both are

linear operations, this is an equation for a linear system with input x(t) and output y(t).

The output y(t) appears on both sides of the equation, so it is a linear feedback system.

Since the present output depends on the full past history, it is an in�nite impulse response

system (an IIR �lter).

Taking the Fourier transform of both sides, the di�erential equation can be expressed

using multiplication in the Fourier domain:

d̂(!)ŷ(!) = �ŷ(!) + x̂(!):

Solving for ŷ(!) in this expression gives:

ŷ(!) = ĥ(!)x̂(!) =
x̂(!)

1 + d̂(!)
;

where ĥ(!) = 1=[1 + d̂(!)] is the e�ective frequency response of this linear feedback system.

Appendix I: A Quick Review of Complex Numbers

Fourier transforms involve complex numbers, so we need to do a quick review. A complex

number z = a + jb has two parts, a real part x and an imaginary part jb, where j is

the square-root of -1. A complex number can also be expressed using complex exponential

notation and Euler's equation:

z = a+ jb = Ae
j� = A[cos(�) + j sin(�)];

where A is called the amplitude and � is called the phase. We can express the complex

number either in terms of its real and imaginary parts or in terms of its amplitude and

phase, and we can go back and forth between the two:

a = A cos(�); b = A sin(�)

A =
p
a2 + b2; � = tan�1(b=a)

Euler's equation, ej� = cos(�)+ j sin(�), is one of the wonders of mathematics. It relates

the magical number e and the exponential function e
� with the trigonometric functions,
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sin(�) and cos(�). It is most easily derived by comparing the Taylor series expansions of the

three functions, and it has to do fundamentally with the fact that the exponential function

is its own derivative: d

d�
e
� = e

�.

Although it may seem a bit abstract, complex exponential notation, ej�, is very con-

venient. For example, let's say that you wanted to multiply two complex numbers. Using

complex exponential notation,�
A1e

j�1
� �

A2e
j�2
�
= A1A2e

j(�1+�2);

so that the amplitudes multiply and the phases add. If you were instead to do the mul-

tiplication using real and imaginary, a + jb, notation you would get four terms that you

could write using sin and cos notation, but in order to simplify it you would have to use all

those trig identities that you forgot after graduating from high school. That is why complex

exponential notation is so widespread.

Appendix II: The Fourier Transform

Any signal can be written as a sum of shifted and scaled sinusoids, as was expressed in Eq. 5.

That equation is usually written using complex exponential notation:

x(t) =
Z
1

�1

x̂(f) ej!tdt: (8)

The complex exponential notation, remember, is just a shorthand for sinusoids and cos-

inusoids, but it is mathematically more convenient. The x̂(!) are the Fourier transform

coe�cients for each frequency component !. These coe�cientes are complex numbers and

can be expressed either in terms of their real (cosine) and imaginary (sine) parts or in terms

of their amplitude and phase.

A second equation tells you how to compute the Fourier transfrom coe�cients, x̂(!),

from from the input signal:

x̂(!) = Ffx(t)g = 1
2�

Z
1

�1

x(t) e�j!t dt: (9)

These two equations are inverses of one another. Eq. 9 is used to compute the Fourier

transform coe�cients from the input signal, and then Eq. 8 is used to reconstruct the input

signal from the Fourier coe�cients.

The equations for the Fourier transform are rather complex (no pun intended). The best

way to get an intuition for the frequency domain is to look at a few examples. Figure 9 plots

sinusoidal signals of two di�erent frequencies, along with their Fourier transform amplitudes.

A sinusoidal signal contains only one frequency component, hence the frequency plots contain

impulses. Both sinusoids are modulated between plus and minus one, so the impulses in the

frequency plots have unit amplitude. The only di�erence between the two sinusoids is that

16



Time (sec)

0

1

0

0

-1
1

0

1

-1
0 1

x(t)

x(t)

Signal Amplitude of Fourier Transform

0

|X(f)|

0

1

84

0

|X(f)|

0

1

84

Frequency (Hz)

Figure 9: Fourier transforms of sinusoidal signals of two di�erent frequencies.
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Figure 10: Fourier transforms of sine and cosine signals. The amplitudes are the same,

but the phases are di�erent.
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one has 4 cycles per second and the other has 8 cycles per second. Hence the impulses in

the frequency plots are located at 4 Hz and 8 Hz, respectively.

Figure 10 shows the Fourier transforms of a sinusoid and a cosinusoid. We can express the

Fourier transform coe�cients either in terms of their real and imaginary parts, or in terms of

their amplitude and phase. Both representations are plotted in the �gure. Sines and cosines

of the same frequency have identical amplitude plots, but the phases are di�erent.

Do not be put o� by the negative frequencies in the plots. The equations for the Fourier

transform and its inverse include both positive and negative frequencies. This is really just

a mathematical convenience. The information in the negative frequencies is redundant with

that in the positive frequencies. Since cos(�f) = cos(f), the negative frequency components

in the real part of the frequency domain will always be the same as the corresponding postive

frequency components. Since sin(�f) = � sin(f) the negative frequency components in the

imaginary part of the frequency domain will always be minus one times the corresponding

postive frequency components. Often, people plot only the positive frequency components, as

was done in Fig. 9, since the negative frequency components provide no additional informa-

tion. Sometimes, people plot only the amplitude. In this case, however, there is information

missing.

There are a few facts about the Fourier transform that often come in handy. The �rst of

the properties is that the Fourier transform is itself a linear system, which you can check for

yourself by making sure that Eq. 9 obeys both homogeneity and additivity. This is important

because it makes it easy for us to write the Fourier transforms of lots of things. For example,

the Fourier transform of the sum of two signals is the sum of the two Fourier transforms:

Ffx(t) + y(t)g = Ffx(t)g+ Ffy(t)g = x̂(!) + ŷ(!);

where I have used Ff�g as a shorthand notation for \the Fourier transform of". The linearity

of the Fourier transform was one of the tricks that made it easy to write the transforms of

both sides of Eq. 6.

A second fact, known as the convolution property of the Fourier transform, is that the

Fourier transform of a convolution equals the product of the two Fourier transforms:

Ffh(t) � x(t)g = Ffh(t)gFfx(t)g = ĥ(!)x̂(!):

This property was also used was used to write the Fourier transform of Eq. 6. Indeed this

property is central to much of the discussion in this handout. Above I emphasized that for

a shift-invariant linear system (i.e., convolution), the system's responses are always given by

shifting and scaling the frequency components of the input signal. This fact is expressed

mathematically by the convolution property above, where x̂(!) are the frequency components

of the input and ĥ(!) is the frequency response, the (complex-valued) scale factors that shift

and scale each frequency component.

The convolution property of the Fourier transform is so important that I feel compelled

to write out a derivation of it. We start with the de�nition of convolution:

y(t) = h(t) � x(t) =
Z
1

�1

x(s) h(t� s) ds:
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By the de�nition of the Fourier transform,

ŷ(!) =
Z
1

�1

�Z
1

�1

x(s)h(t� s) ds

�
e
�j!t

dt:

Switching the order of integration,

ŷ(!) =
Z
1

�1

x(s)

�Z
1

�1

h(t� s)e�j!t dt

�
ds:

Letting � = t� s,

ŷ(!) =
Z
1

�1

x(s)

�Z
1

�1

h(�)e�j!(�+s) d�

�
ds

=
Z
1

�1

x(s)e�j!s
�Z
1

�1

h(�)e�j!� d�

�
ds

Then by the de�nition of the Fourier transform,

ŷ(!) =
Z
1

�1

x(s)e�j!sĥ(!) ds

= ĥ(!)
Z
1

�1

x(s)e�j!s ds

= ĥ(!)x̂(!)

A third property of the Fourier transform, known as the di�erentiation property, is ex-

pressed as:

F
n
dx
dt

o
= 2�j!Ffxg:

This property was used to write the Fourier transform of Eq. 7. It is also very important

and I would feel compelled to write a derivation of it as well, but I am running out of energy,

so you will have to do it yourself.
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