Date of Draft: 3/15/02

Decisions, Decisions, Decisions. Choosing a Biological Science of Choice
Paul W. Glimcher

Center for Neural Science, New Y ork University, New York, NY 10003

Running head:

The Biological Science of Choice

Priviledged Communication

Address all correspondence to:

Paul W. Glimcher

Center for Neural Science
4 Washington Place, 809
New York, NY 10003

TEL: 212-998-3904
FAX: 212-995-4011

glimcher@cns.nyu.edu



Glimcher, Paul W. / page 2

Introduction

In the 1650’ s Blaise Pascal puzzled over one of the most complicated decisions faced by
enlightenment philosophers: “ Either God isor heisnot.” he wrote “But to which view shall we be
inclined?’ Pascal took what was then a completely novel approach to this problem, arguing that
one should “weigh up the gain and loss involved in calling heads that God exists’ or tails that he
does not (Pascal, 1670).

Over the ensuing three centuries, Pascal’ s notion that gain and uncertainty must interact
whenever rational decision making occurs has become the foundation for all rigorous analysis of
human choi ce behavior. Modern economic theory rests almost entirely upon thisidea. Some think-
ers, however, have criticized Pascal’ s approach, and in particular its use to characterize financial
decision making, as unsystematic. These scientists have noted that while uncertainty can berigor-
ously quantified with tools like Bayesian Estimation, understanding the subjective value of afi-
nancial gain or alossin mathematical terms may be impossible. Recently, however, a group of
biologists have argued that economic approaches applied to biological questions might overcome
this limitation by relying on an alternative system of valuation based in evolutionary theory. “ Par-
adoxically,” John Maynard Smith wrote in 1982, “it has turned out that game theory [a branch of
modern economic theory] ismorereadily applied to biology than to the field of economic behavior
for which it was originally designed...the theory requires that the values of different outcomes (for
example, financia rewards, the risks of death and the pleasures of a clear conscience) might be
measured on asingle scale. In human applicationsthismeasureis provided by  utility’ -asomewhat
artificial and uncomfortable concept: In biology, Darwinian fitness provides a natural and genu-

inely one-dimensional scale.”
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By anchoring economic theory to Darwinian notions of fitness, these behavioral ecologists
undertook to explain the ultimate causes of human and animal behavior. Whether amoose decides
to eat algae or grass on a particular day (Belovsky, 1984), with whom a monkey decides to mate
(Dunbar, 1984), or whether a young salmon decides to forage or hide (Bull et al., 1996), can all,
these scientists contend, be viewed as decisions which are the products of evolution acting to max-
imize fitness in the face of uncertainty. Behavioral ecologists explain behavior in evolutionary
terms. Their goal isto relate atheoretical assessment of what an animal should do with data about
what animals actually do. They try to understand what causes a behavior by understanding the evo-
lutionary constraints under which that behavior evolved.

In contrast, neurobiologists devote their resources to understanding what causes behavior
to occur inamore proximal sense. Neurobiol ogists seek to understand the mechanistic cellular pro-
cesses by which the brain produces specific behavioral acts. Understanding how acuelight causes
arat to pressalever for food, or how avisual target presented to amonkey elicitsan eye movement;
neurophysiol ogists have sought to understand what causes a behavior by studying the sensory-mo-
tor architecture of the brain.

The existence of these parallel approaches to understanding behavior raises an interesting,
and often overlooked, question. What is the relationship between ultimate and proximal causation
in behavior? While evolution may shape behaviors towards efficient forms, the specific environ-
mental variables which guide evolution may not be represented explicitly by the neural architec-
ture evolution produces. There may be little reason to believe that the computations which
influence fitness at an evolutionary level are echoed by the computations made within the brains
of individual animals. In thelast decade, however, evidence has been accumulating that the brains

of complex animals like mammals perform operations which closely correspond to the optimiza-
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tion problems behavioral ecol ogists describe asthe ultimate causes of behavior. These datasuggest
that the environmental problems animals face may shape not only behavior, but also the neural
hardware that generates that behavior. If thisiswidely true, then it may be of tremendous impor-
tance to neurophysiologists. The studies of behavioral ecologists may define the computations per-
formed by the primate neurophysiological architecture for decision making just as mathematical
studies of image encoding shaped our understanding of sensory encoding in the last century. This
articlereviews some of the growing evidence that economic analyses of behavior may provide neu-
robiologists with critical information not just about what problems animals face, but about how

their brains solve those problems.
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Ultimate and Proximal Causes of Decision: Static Conditions

In 1966, The American Naturalist published two papers that largely invented quantitative
behavioral ecology?. J. Merritt Emlen writing alone and Robert MacArthur writing with Eric Pi-
anka suggested that whenever an animal must make a decision about what food to ezt it faces an
optimization problem that can be quantified and solved in economic terms. Evolution, they sug-
gested, could be viewed as aforce that might well drive organisms not just to solve these problems
but to solve them efficiently. ‘ Thereisaclose parallel between the development of theoriesin eco-
nomics and population biology. In biology, however, the geometry of the organisms and their en-
vironment plays a greater role. Different phenotypes have different abilities at harvesting
resources, and the resources are distributed in a patchwork in three dimensionsin the environment.
In this paper we undertake to determine in which patches a species would feed and which items
would formitsdiet if the speciesacted in the most economical fashion. Hopefully, natural selection
will often have achieved such optimal allocation of time and energy expenditures, but such “opti-
mum theories’ are hypotheses for testing rather than anything certain’ (MacArthur and Pianka,

1966).

The area of behavioral ecology which developed directly from these two papers, foraging
theory, has made significant advances since 1966 and today at least 6 independent optimization
problems have been identified, modeled, and tested. One class of foraging problem that has re-
ceived significant attention, and one of particular relevance to neurobiologists, isthe study of Prey
Selection. As amonkey roams the savannah it encounters patches of food of different types and

qualities, each with adifferent frequency. Each food type, a plant with nutritious roots, acolony of

1. Infairness, quantitative approaches to foraging problems had been attempted before. See Holling (1959) for an ex-
cellent example of an earlier paper which shaped modern foraging theory.
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insects, or apieceof fruit, occurswith acertain probability and acertain caloric density. Each takes
adifferent amount of time and energy to obtain and consume, and so each has a different value, or
profitability, to the monkey. What happens when amonkey like this encounters eight food patches,
each with a different set of sensory properties? Those sensory properties allow the animal to esti-
mate the value of each patch, the cost of harvesting each patch, and the frequency with which a
patch of that typeisencountered. Prey Selection models use these variablesto predict which patch,
if any, the monkey will attempt to acquire and consume. Empirical tests then seek to determine
how closely actual animals approximate these optimal solutions.
Box: Prey Model. Text can be found at manuscript end

While neurophysiologists have started to examine the proximal causes of behaviors very
much like those produced by aforaging monkey, they have tended to focus aimost exclusively on
the neural pathwaysthat link sensory stimuli, like the color of afood patch, with movement control
pathways, like those that activate the muscles of the arm. Very little attention has been paid to the
variables behavioral ecologists study. In part this reflects the current state of our neurobiological
sophistication; both sensory systems and movement control systems are far better understood than
the systems which assess the values, likelihoods, and profitabilities of outcomes. But as aresult,
many classical physiological studies have almost entirely ignored the variables behavioral ecolo-
gistsidentify ascritical at the level of ultimate causation. If the vertebrate brain does represent the
environmental variablesthat define strategiesfor maximizing evolutionary fitness, then these more
classical studies of sensory-to-motor connections may only reveal the most superficial properties
of the neural architecture for decision making.

Figure 1: Sensory-to-Motor Connectivity in Visual-Saccadic Decision M aking
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In order to better understand how physiological studies of decision making differ from eco-
logical studies of decision making consider the following set of landmark experiments by Jeffrey
Schall and his colleagues (cf. Hanes and Schall, 1996; Schall and Thompson 1999). For those ex-
perimentsthirsty rhesus monkeysweretrained to stare straight ahead at acentrally located fixation
stimulus. Shortly after the monkey began staring straight ahead eight secondary targets appeared,
arranged radially around the central fixation stimulus. Seven of those targets appeared in a com-
mon color and one appeared in adifferent color, an oddball. If the animal looked at any of the 7
common color targets the trial ended. If he looked at the oddball, he received a drop of fruit juice
asareward.

Figure 2: Oddball Task with Schall Activity Plot

Under conditionslike these, we know quite alot about both the sensory and motor process-
esthat must become activein the monkey’ sbrain. When the targetsilluminate, we know that eight-
locations in the visual cortices become active. These signals propagate through the visual system
towards saccadic eye movement control centers like the frontal eye fields (FEF) and the superior
colliculus (SC). Only one of the 8 locations, however, represents the oddball and ultimately leads
to activation of the eye movement control circuitry in those areas. So how is the trandlation, from
8 visual signals to one motor command, actually accomplished? To answer that question Schall
and his colleagues recorded the activity of neurons in the saccadic movement maps of the FEF
while monkeys performed this oddball detection task.

Whenever monkeys executed hundreds of these oddball detection trials, Schall noticed that
therewasanatural variability in the speed with which the monkeys produced their saccades. Based
on this behavioral variability, trials could be divided into fast, medium, and slow groups. Examin-

ing the activity of FEF neurons on these trials they found that each neuron was most active before
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amovement in aparticular direction, that neuron’s best movement. Taking into account both the
behavioral and neurophysiological data, trials could be subdivided into those in which the move-
ment acquiring the oddball was the best movement for the neuron being studied, and thosetrialson
which the oddball elicited a different movement.

Schall found that FEF neuronsroseto an early peak firing rate shortly after stimulus onset,
but only after about 80ms was there evidence, in these neurons, of an underlying decision process.
At that point, neuronal firing rates continued to grow if the best movement for the studied neuron
was required to look at the oddball; otherwise firing rates dropped back towards baseline levels.
Further, on fast reaction time trials, activity increased more quickly than on slow reaction time tri-
als. Importantly, regardless of the rate of increase in neuronal activity the movement occurred at a
roughly fixed interval after the firing rate reached a specific level. Thisled Schall to suggest the
existence of a decisional threshold which the rising activity had to crossin order for a movement
to be produced.

While these experiments do tell us something important about the relationship between
sensation and action in the primate nervous system, what is most striking to abehavioral ecologist
isthat almost none of the variables which guide decision making were manipulated in those stud-
ies. The values, costs, profitability, and likelihoods of reward associated with stimulus and move-
ment were not varied, instead all of those variables were held constant under al conditions. Asa
result, to abehavioral ecologist these experiments seem more about movement production than
about decision making per se.

To more completely understand this point of view consider aclassic ecological study of de-
cision making by John Krebs and his colleagues (1977). In Krebs' experiment, at the beginning of

an experimental session, hungry titmice, a small european bird in the chickadee family, were
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placed in a one cubic meter cage. The floor of the cage was opague except for a 2-1/2 inch hole,
placed beneath a perch, which overlooked ablack rubber conveyor belt diding past the opening at
aspeed of 5 inches per second. Out of sight of the bird, the experimenters could place mealworms
(afavorite food of titmice) on the belt which would present the worms to the birds through the 2-
1/2 inch hole for about 0.5s. The birds had to decide whether to grab aworm asit went by, or
whether to wait for the next worm to appear.
Figure 3- Krebs Expt: Bird Foraging Over Conveyor-Belt

In order to characterize the serial decision problem that the birds faced in terms of the clas-
sical Prey Selection Model (Charnov and Oriens, 1973; see Stephens and Krebs, 1986 for afull
treatment of the model) three classes of variables were systematically manipulated in this study.
First, the caloric value of the mealwormswas controlled. Wormswere presented in two sizeswhich
differed in value by afactor of two. Second, the handling time (and thus the cost) associated with
each worm type was measured for each individual bird, and in the case of the small worms was
manipulated. This was accomplished by attaching pieces of paper tape to the small worms which
the birds had to remove. By measuring thetimeit took each individual to handle and consume both
large and small wormsit was possible to determine the rel ative profitability of the two worm types
to each individual. Because some birds were able to strip the paper tape off more quickly than oth-
ers the profitability of the small worms varied significantly from individual to individual. Third,
the experimenters systematically manipulated the frequency with which, in a given experimental
session, worms of each type were encountered. In each session, large and small wormswere placed
on the conveyor belt according to a predetermined pseudo-random sequence yielding a specific
mean encounter frequency for that prey type. Varying the encounter frequency was selected be-

cause under these circumstances the Prey Selection model makes a critical prediction. It predicts
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that for agiven bird the average rate at which large worms are encountered should set a minimum
threshold for profitability. Any prey that falls beneath this threshold should never be selected re-
gardless of the frequency with which it is encountered (cf. Stephens and Krebs, 1986).

When the experiment was run, the actual choices made by each bird were well predicted
by the Prey Selection model. For birds who could strip the tape away quickly, the model predicted
that the small worms should always be above the threshold of profitability. For the birds that han-
dled the small worms slowly, however, the prey model made adifferent prediction. At one or more
of therates at which large wormswere presented, each of these birds should have decided to select
only the large worms and to ignore the small worms. What Krebs and his colleagues found was
that the choice behavior of the birds did reveal the existence of this profitability threshold, and at
alevel that was almost identical to the level predicted by the model™.

In 1966 MacArthur and Pianka wrote that, ‘“ optimum theories’ [which describe behavior
as the product of evolution and the environment] are hypotheses for testing rather than anything
certain’. Recent tests of these hypotheses, like the one conducted by Krebs and his colleagues, sug-
gest that economic approaches may often describe both behavior, and the environmental variables
that shape it, quite accurately (Krebs and Davies, 1997). Neurophysiological studies of decision
making, however, have until recently aimost completely ignored these variables astoolsfor under-
standing the nervous system. Of course the notion that optimum theories of the type MacArthur
and Pianka pioneered can be used to study the neural architecture for decision making is more a
hypothesisfor testing rather than anything certain. But anumber of |aboratories have begun to per-

form those tests and the results are encouraging.

1. Krebsand his colleagues, however, also observed one significant deviation of behavior from the model. Although
the birds showed strong preferences for the large worms at the right times, they did not show an absolute preference.
When they should have been ignoring the small worms completely they were still sampling those worms about 10%
of the time, aresult which has been widely repeated but never entirely explained.
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Decision Variables and Neural Architectures
C. Randy Gallistel and his colleagues have spent over 20 years studying the decisions rats

make when they work for brain stimulation reward, the direct electrical activation of neural struc-
tureslike the medial forebrain bundle (MFB) with surgically implanted electrodes (cf. Gallistel et
al., 1981; Gallistel 1994). Unlike ecological studiesin which rewards are experienced through in-
tact perceptual systems, experimentswith brain stimulation reward bypass at |east some of the sen-
sory component of standard sensory-motor decision making. These studiestherefore permit oneto
test the hypothesis that variables which serve as the ultimate causes of behavior can govern the de-
cisions made by areduced segment of the neural architecture, shifting the focus of the economic

approach towards a study of the proximal causes of behavior.

Gallistel’s most recent work along these lines (cf. Leon and Gallistel, 1992; Mark and Gal-
listel, 1993; 1994) has focused on the study of rats who must chose between two different patterns
of stimulation. In those experiments, arat is placed in a cage that contains two levers. If the rat
depresses the right lever the MFB is activated by a brief train of electrical pulses delivered at a
fixed frequency and current. If the rat depresses the left lever the MFB is also activated, but at a
different frequency and current. The rat must decide between these two options, allowing the ex-
perimenter to assess the relationship between the subjective value of the stimulation and the fre-
guency and current of MFB activation. The only drawback to this approach towards understanding
the value of MFB stimulation, however, is that one can only rank order the values of the left and
right levers.

In order to overcome that limitation, Gallistel and his colleagues adjusted the dynamic
structure of the rewardsin the standard two lever choice task in order to extract, from the animal’s
behavior, a precise estimate of the exact value of any pattern of stimulation. To do this, they adopt-

ed a strategy first pioneered for the study of choice behavior in pigeons by Richard Herrnstein
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(1961) in which each of the rat’ stwo levers was configured so that the likelihood it would release
astimulation train increased in proportion to the time since the lever was last pressed (avariable
interval schedule). Under this regime, the left lever might, for example, become enabled with an
additive probability of 0.5 per second while the right lever might become enabled on any given
second with alower additive probability of 0.3. Importantly, once enabled, alever remained en-
abled until the reward was harvested by therat. In aconfiguration like this, during the first second
of an experiment in which thetwo leversyield rewards of equal value, theleft lever isclearly more
profitable and the rats should respond on it exclusively. But after 3 seconds spent pressing the left
lever, theright lever reaches apoint at which it isnow morelikely to present areward than the | eft
lever. Under these conditions the animal should now switch to the right lever.

Inthe more genera case, wherethe values of the reward produced by thetwo leversvaries,
foraging theories predict that response rates on each lever should be proportional to their relative
profitabilities. If one of the two levers presents a standard reward and the other presents areward
that isvaried across blocks of trials, then it should be possible to determine the precise value of any
physiological stimulation to therat with regard to afixed standard by observing thefraction of time
he budgets to each lever.

When Gallistel and his colleagues examined thistwo lever variable interval schedule with
self-stimulation as the reward, they were able to apply an economic-style analysis to the choices
rats madein order to describe the precise subjective profitability of any pattern of MFB activation.
This allowed them to derive an equation defining the value of stimulation as afunction of the cur-
rent, frequency and duration of MFB stimulation. Gallistel’ sresults are critical because they were
amongst thefirst to suggest that economic-style approaches could be used to study neurobiol ogical

phenomena. They show that economic approaches can be used to characterize decision making not
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just at the level of the whole organism, but even when the sensory-perceptual systems by which
the animal assesses natural rewards are replaced by the direct electrical activation of an internal
neural structure. If the approaches behavioral ecologists employ for studying the ultimate causes
of behavior can be used to study electrical stimulation of the MFB, can these approaches also be
used in neurophysiological studies of decision making?
Figure 4: Platt and Glimcher task and Unit Data

To begin to answer that question Platt and Glimcher (1999) developed a neurophysiol ogi-
cal experiment based loosely on foraging approaches like the ones Krebs and Gallistel employed,
but in this case designed to examine the neural substrate for visual-saccadic decision making in
rhesus monkeys. In that experiment, thirsty monkeys were trained to stare straight ahead at a cen-
tral visual stimulus. After adelay, two eccentric targets were illuminated and the monkeys had to
choose whether to ook at the left target, the right target, or to abort the trial. The critical manipu-
lation was that on sequential blocks of 100 trials the amount of juice that the monkeyswould earn
for each of the leftwards and rightwards movements was systematically manipulated and the ani-
mals decisions about which movement to make were recorded. Finally, while the monkeys made
decisions under these varying conditions, the activity of single neuronsin parietal cortex was stud-
ied to test the hypothesis that the relative profitabilities of the leftward and rightwad responses
were being represented within the neural architecture itself. The posterior parietal cortex was se-
lected for examination, at least in part, because it was a major source of input to the FEF.

At atheoretical level the problem that the monkeys faced at the beginning of each block of
100 trials wasfirst to determine the relative profitability of both responses. Once that has been ac-
complished, animals might be expected to adopt an efficient foraging strategy, presumably produc-

ing only the more profitable response. Instead, we found that the monkeys typically matched their
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rates of responding during each block to the relative profitability of the two responses, as the rats
had in Gallistel’ s experiments. In 1972 the behaviora ecologist Stephen Fretwell developed a
model for foraging under these circumstances which might provide some insight into the ultimate
cause of this apparently sub-optimal behavior. Fretwell noted that whenever animalsforagein
groups and have to compete with each other for access to rewards of different values, probability
matching of thistype is always an optimal strategy. This raised the possibility that monkeys may
probability match under many circumstances because the neural computations that they perform
reflect an evolutionary assumption that they are competing with other monkeys.

In any case, while the animals were engaged in this matching behavior the activity of neu-
rons in the eye movement control area of posterior parietal cortex was assessed. Neurons associat-
ed with rightwards movementswere, under these circumstances, found to carry asignal which was
highly correlated with the relative profitability of the rightward movement. Similarly, neurons as-
sociated with leftward movements seemed to encode the relative profitability of the leftward
movement. Essentially, the ratio of these two activities was correlated not only with the relative
profitabilities that controlled behavior in Fretwell’s model of multi-animal foraging, but also with
the actual moment-by-moment probability matching behavior of the animals in which these neu-
ronsresided. To afirst approximation then, the neuronal data seemed to suggest that computations
performed by the neural architecture for decision making were at |east related to computations that
should be the ultimate causes of decision making behavior.

More recently, Gold and Shadlen (2000) have come to asimilar conclusion in a study of
activity inthe FEF of monkeys during another kind of visual-saccadic decision making task. In that
experiment, monkeys were trained to stare at afield of chaotically moving spots of light. A small

fraction of those spots, however, moved coherently in asingledirection, either to theright or to the
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left. If the monkey reacted to this display by looking in the direction that the small fraction of co-
herently drifting spots were moving, he earned ajuice reward. Gold and Shadlen (2001) applied a
formal decision theoretic analysis to the problem the monkeys faced. They reasoned that when a

large fraction of the spots were moving coherently the monkeys ought to be able to assess the like-
lihood that a rightward movement would be rewarded quite quickly. When only atiny fraction of

the dots were moving coherently, the monkeys ought to stare at the moving spots as long as possi-
ble to maximize the likelihood that they had correctly identified the more profitable movement. If

the decision making architecture reflected this calculation explicitly, then it should produce neural

activity with atemporal profile which reflected a moment-by-moment estimate of the mathemati-
cal likelihood that a movement would be rewarded.

To test this hypothesis, Gold and Shadlen (2000) used electrical stimulation in the FEF to
trigger a saccade at a variable interval after the moving spot display began. Under normal condi-
tions stimulation of the FEF elicits a saccade having a fixed amplitude and direction and it was
hoped that the temporal profile of the saccadic decision process would be revealed as a systematic
deviation in the endpoint of the stimulation-induced movements. What they found was that the
stimulation-induced movements were indeed systematically biased, and in away that was corre-
lated, at each point in time during the decision making interval, with the theoretically derived es-
timate of the likelihood that a given movement would be rewarded. Once again, the neurons
seemed to be encoding asignal closely related to the variables an economically based model indi-
cated should be the ultimate cause of the behavior.

Summary
Over the course of the last several decades behavioral ecologists have repeatedly demon-

strated that animal s often select between uncertain options of variable valuein waysthat are highly
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efficient; Evolution appears to push animals towards efficient decision making within their
evolved niches. Behaviora ecologists have been able to show that models of optimal decision
making rooted in economic theory do a surprisingly good job of describing the computations that
animals perform. More recently, neurobiologists have begun to appropriate this approach, using
economic tools developed for studying the ultimate evolutionary causes of behavior for the exam-
ination of the neural architecture which serves as the proximal cause of that behavior. The studies
presented here, and literally dozens of other closely related studies (see the other articlesin this
issue of neuron) have begun to suggest that the explicit computations modeled by behavioral ecol-
ogists can be dissected at a neuro-computational level.

In al of these cases, however, animals are decision makers who must select and execute a
rational course of action in a passive world. The world is conceived of as presenting afixed prob-
lem that the animal must solve. While clearly valuable, studies of this kind may fail to engage the
richest and most complicated kind of decision making, the unpredictable or stochastic decisions

that humans and animals make when faced with more complicated environmental situations.
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Dynamic Conditions; The Theory of Games

In the middle of the twentieth century the mathematician John VVon Neumann and the econ-
omist Oskar Morgenstern (1944) became interested in understanding when and how stochastic be-
havior, behavior in which humans behave unpredictably, might be described as an efficient
strategy for maximizing wealth. Von Neumann recognized that most economic problems which
had been well described at that time involved straightforward optimization of the kind foraging
theoristswould later study. In those problems, the likelihoods and values of all possible future out-
comes are considered static variables insensitive to the actions of the decision maker. What Von
Neumann realized was that problems of thistypefail to capture situationsin which the profitability
of acourse of action isinfluenced both by the actions of the decision maker and by the actions of
intelligent opponents who may themselves be influenced by the decision maker.

Consider afamous experiment in behavioral ecology conducted by D. G. C. Harper in 1982
when aflock of duckswintered on the main pond at the Cambridge University Botanical Garden.
Each morning two experimenters would walk to different banks of the pond, each with a sack of
5g breadballs. At asignal they would both begin throwing the balls onto the ground at afixed rate,
experimenter one throwing one ball every 10s and experimenter two throwing one ball every 20s.
To characterize this as a standard foraging problem, imagine that 20 ducks are fixed in position in
front of experimenter one and 9 ducks are fixed in position in front of experimenter two. A single
free duck who must choose between walking towards experimenter one or experimenter two
should compute the profitability, in grams of bread per minute, of each action. Experimenter one
provides aprofitability of 30g/min/20ducks=1.5g/m/duck. Experimenter two provides aprofitabil-
ity of 15g/min/9ducks=1.67g/m/duck. The rational strategy under these conditions would be for

the free duck to walk towards experimenter two.
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What VVon Neumann recognized, when thinking about human decision making under sim-
ilar conditions, was that the situation becomes much more complicated when all the subjects (in
our case ducks) are free to make this same decision at the same time. Imagine a situation like the
one above, but in which each duck is free to move. Under these conditions, each of the 20 ducks
infront of experimenter onerealizesthat it would be more profitable to switch to experimenter two.
Of coursg, if al of them switch to experimenter two, then any duck remaining in front of experi-
menter onewill profit enormously; as ducks shift towards experimenter two, their actions ater the
profitability of standing in front of experimenter one. Under these conditions the dynamic interac-
tions of the ducks influence profitability as much as does the rate at which breadballs are thrown.
What then is the optimal response under these conditions?

The modern solution to this class of problem was developed by John Forbes Nash in the
1950's. Nash (1950a;b) recognized that under conditions like these the population as a group
could be viewed as a dynamic system which would ultimately reach a stable group solution, or
equilibrium, when the expected value of each resource patch was equivalent. The ducks would
reach a group equilibrium when, and only when, 10 ducks stood before experimenter two and 20
ducks stood before experimenter one, rendering the profitability of both patches 1.5g/m/duck.

To makeNash'sinsight clear consider acasein which 21 ducks stand momentarily in front
of experimenter one and nine stand in front of experimenter two. The popul ation will reach astable
point most efficiently (and each duck will be guaranteed a maximal return assuming all the other

ducksbehaverationally) if and only if in the next moment each duck standing before experimenter

1. It should be noted that the classical solution to the duck’s problem, at least in behavioral ecological cir-
cles, was developed by Stephen Fretwell in 1972. Fretwell’s solution models an ‘ideal free distribution’
of the ducks which he proved mathematically was an optimal response to this class of foraging problem.
Fretwell’s work, however, was largely duplicative of Nash's solution which had been reached much ear-
lier and already dominated economic thought about these problems even though it had yet to directly
influence the community of behavioral ecologists.
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one shows a 1 in 21 chance of shifting to experimenter two. Each duck should behave stochasti-
cally, but in amanner constrained by the ecological problem that the ducks face.

Harper’ s experiment was critical because it tested both the idea that the ducks could reach
thiskind of stable Nash Equilibrium and the notion that the ducks could behave unpredictably.
When the experiment was performed it was found that the flock of 33 ducks assorted themselves
within as little as 90s at a Nash equilibrium solution, precisely matching their behavioral distribu-
tion to therelative profitabilities of the two experimenters as predicted by Nash’'s (and Fretwell’s)
equations. If the experimenters then changed to new rates of breadball throwing, the ducks would
immediately resort themselves, assuming the new equilibrium distribution in as little as 90s. One
thing that was particularly striking about this result was the speed with which the ducks achieved
thisassortment. After 90sof breadball throwing, asfew as 10 breadball s have been dispersed. Long
before half the ducks have obtained even a single breadball, they have produced a precise equilib-
rium solution.

Harper a so tested the game theoretic hypothesis derived from other work (cf. Maynard
Smith, 1982) that each duck should behave unpredictably on a moment-by-moment basis. Even
when the flock was at a stable equilibrium, Harper found that individual ducks were constantly in
motion. When the equilibriarequired that onethird of the ducks stand in front of experimenter one,
it was observed that each duck spent arandom one third of itstime standing in front of experiment-
er one. The behavior of individual ducks asthey solved this sensory motor problem was stochastic
and unpredictable at alocal level but maintained the Nash equilibrium globally.

Harper’ s experiment suggests that even when animals are dynamic and unpredictable, their
behavior may still be described as the product of an evolutionary process that optimizes decision

making. Thus even stochastic behavior may be ultimately caused by the environmental constraints
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that drive evolution. Indeed, agrowing number of other studies support this conclusion. For exam-
ple, Craig Packer and his colleagues (cf. Packer and Ruttan, 1988; Packer et al., 1990) have shown
that the strategic behavior of lions who compete within a pride can be well described using game
theoretic approaches. Of course the question that this raises is whether game theoretic approaches
which define the ultimate causes of competitive and stochastic behavioral decisions can also be
used to better understand the neural substratesthat serve asthe proximal causes of these unpredict-
able behaviors.
Game Theory and Neural Architectures

A number of researchers have recently begun to examine how the theory of games might
be used to analyze the neural architecture active when competitive and stochastic behaviors are
produced. Kevin M cCabe and colleagues (2001) pioneered this approach when they examined the
brains of human subjects engaged in astrategi c game using functional magnetic resonanceimaging
(fMRI). Intheir experiment subjects played agame called trust and reciprocity, in which two play-
erswork sequentially and interactively to earn money. One of the two subjects played the game
from inside an fMRI scanner with a second subject with who was|ocated outside the scanner. The
trust and reciprocity game begins with the first player who must decide whether to terminate the
gameimmediately, in which case both players earn a45 cent cash payoff, or whether to turn control
of the game over to player two. If control passesto player 2, then player 2 must decide how to split
amuch larger gain, 405 cents. Player two must decide between taking all 405 cents for herself or
keeping only 225 and returning 180 to player one.

Figure5: Extensive Form Game Tree for Trust and Reciprocity
For agame theorist, this conflict is particularly interesting when subjects face a new oppo-

nent on each trial. Under those circumstances, if player two is perfectly rational, given the chance
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shewill alwaystake all 405 for herself. Cooperating with player one offers her no advantage. Play-
er one knows this and should, therefore, always be compelled to end the game on the first play,
which guarantees her asmall, but at |east positive, outcome. When players encounter each other
repeatedly, however, adifferent optimal strategy can emerge. Thetwo playerscan cooperatein fear
of future retribution, electing to trust one another in order to reach the 180/225 outcome on each
play.

Like more classical foraging examples, the trust and reciprocity game examines asituation
in which subjects must decide between one of two possible responses. But unlike more classical
examples, the optimal solution depends upon assumptions both about the likelihood of encounter-
ing the same player and assumptions about how one’ s own behavior will influence the behavior of
the opponent. Thisis a property that defies explanation with non-game theoretic tools and makes
it similar in many waysto Harper’s duck experiment.

What McCabe and his colleagues found was that a typical subject was very likely to coop-
erate with a human opponent, even when she was told that she would face a different opponent on
subsequent trials. Humans turned out to be more cooperative with other humans than was strictly
rational, amost as if their brains were performing a computation that assumed this opponent
would, sooner or later, be encountered again. However, when subjects were told that they faced a
computer opponent they often took a different, and more purely rational approach. They almost
never cooperated. What McCabe and his colleagues found when studying the brains of their sub-
jectsunder these conditionswasthat whenever asubject chose to cooperate with ahuman opponent
aspecific region in prefrontal cortex was more active than when they decided to act rationally

against the computer. While this does not tell us too much about how cooperativity is computed
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neurally, the McCabe experiment is an important first step because it demonstrates that game the-
oretic approaches can be used to study the neurobiological basis of stochastic decision-making.

Recognizing the significance of this strategy, two other groups have also begun to explore
game theoretic techniques for identifying variables that might be encoded in the neural decision
making architecture. Dorris and Glimcher (2001) have trained monkeys to participate in aclassic
strategic conflict called the ‘inspection game,” which is based loosely on Harper’s studies of for-
aging ducks. Ongoing studies of single neuronsin the brains of monkeys playing this game may
well provide insight into the computational architecture involved in the production of stochastic
behavior. In asimilar vein, Berns and colleagues (2001) have begun to examine, using fMRI, the
brains of pairs of humans engaged in strategic interactions. In those experiments, two humansin
two fMRI scanners play agame classically called * matching pennies’ while both are simultaneous-
ly scanned. These simultaneous studies may soon provide insight into the moment-by-moment in-
terplays of neural activity that characterize stochastic decision making between pairs of subjects.
Summary

In the 1950"sand 60’ sanumber of neurophysiologists became interested in understanding
how the sensory systems of the brain encoded information about the outside world. One approach
to this problem was to derive an estimate of how an optimally efficient sensory system would op-
erate. Behavioral tests then sought to determine the sensory efficiency of human and animal sub-
jectswith regard to these theoretically defined estimates. Neurophysiological experiments sought
to extend this approach, searching for evidence that the neural architecture actually employed such
strategies. Horace Barlow encapsulated the argument for this strategy in 1961 when he wrote:
“[The tendency of sensory systemsto respond only when a stimulus changes but not when a stim-

ulus remains constant] may be regarded as a mechanism for compressing sensory messages into
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fewer impul ses by decreasing thetendency for serial correlationsin the valuesof impulseintervals.
There must be many occasions when neighboring sense organs are subjected to the same stimul us,
and thiswill lead to correlationsin the values of impulsesin neighboring fibres. This offers scope
for further economy of impulses, and one might look for a mechanism to perform the appropriate
recoding. [A form of recoding that] would...diminish the correlations between impulse intervals
spatially separated...[and thus would, according to information theory, achieve a more nearly op-
timal encoding of the sensory event].

It may be that asimilar logic can be applied to studies of decision making. Over the past
several decades behavioral ecologists have made significant advances in their theoretical studies
of decision making. Economic approaches have allowed them to build sophisticated models of the
environmental constraintswhich define efficient behavioral decision making in evolutionary terms
and to thereby define optimal strategies for decision making. Empirical studies have begun to de-
termine the extent to which the decisions of real animal approximate these ideals. The results of
these inquiries suggest that the relationship between optimal and real and decision making can be
studied effectively with these new tools and that the ultimate evolutionary causes of behavior can
be examined in much the same way that information theory has been used to describe efficient sen-
sory encoding.

As neurobiologists begin to study the proximal causes of decision making it seems imper-
ative that these economic approaches to behavior be employed astools to bridge between ultimate
and proximal causes of behavior. Just asthe sensory physiologists of the last century used models
that were specifically designed to describe efficient sensory encoding and discrimination, neuro-
physiologists interested in decision making must employ economic models specifically designed

to describe the decision making process. If the success of the sensory physiologists during the last
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50 yearsis any indication, models of decision making rooted in economic theory should provide

powerful insights into brain function over the next half century.
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Box: Prey Selection Model

Optimal predation isthe process of achieving amaximum rate of energy intake withamin-
imal expenditure of effort in arandom and unpredictable world. In Charnov’ soriginal formulation
(Charnov and Oriens, 1973) the prey model was developed to determine the most efficient preda-
tory strategy for any animal facing these constraints. The definitive presentation of the prey model
was made later by Stephens and Krebs (1986). The model assumesthat thefirst step in looking for
food is to begin searching. Searching is any activity that takes time and during which the forager
may encounter prey. Searching costs s units of energy per minute and animals engagein search for
atotal time of Tq. After aperiod of searching, it isassumed that the animal encountersaprey item.
The forager then has to make the decision around which the prey model is structured, whether to
use both time and energy to attempt to capture and eat the prey item, or whether to passit up and
continue searching. The process of predating isthus acycle: search, encounter, decide, search, en-
counter, decide...

The goal of the model is to characterize the decision-making phase, for which the animal
must know: i) The energy gained from prey of each type. ii) The average handling time required
to catch and consume the prey. iii) The cost, in energy spent, of the handling process and iv) The
rate, in encounters per unit time, at which aprey of each typeis detected.

We can characterize the rate of net energy intake in any environment, and for any possible
prey attack strategy, in the following way. First, we determine the profitability of each prey type
by multiplying the probability that the forager will attack that prey type, P (the variable controlled
by the forager), by the frequency with which that prey is encountered, A, to determine how often
an attack occurs. Then multiply that frequency by the net energy gained from the prey. (The value

of the prey minusthe energy lost during handling.) This calculation tells us how much energy the
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forager can expect to gain (per unit time) for adopting this probability of attack with this particular

type of prey.

average gain per prey type per unit time=Px\x(energy gained-energy lost) (Equation 1)
Next, one needs to know what attacking each type of prey costsin terms of time diverted
away from searching for other, potentially better, prey items. Multiply the probability of an attack

by the frequency of an encounter and by the total handling time for that prey type.

average time taken per prey type =PxAs(handling time) (Equation 2)

Finally, one sumsthe first calculation across every possible prey type and multipliesit by

the total time spent searching, then subtracts from that the total cost of searching and divides the
sum by the time spent searching plus handling, yielding ameasure of how much energy is gained,

for agiven set of attack strategies, per unit time.

R - (Tsx S‘ Pienergygained) — (Ts x UnitCostof Search)
B Ts+ (E PAHandlingTime)

(Equation 3)

Tofigureout directly what specific attack strategy maximizestherate of energy intake, one
differentiates equation 3 with regard to P, creating a new equation that allows us to compute the

set of attack strategies that maximizes RL.

1. Readersinterested in the actual derivations and equations should examine Stephens and Krebs (1986) for afull presentation.
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Figure Legends

Figure 1: Visual signalsoriginating in the retina pass, viathe lateral geniculate nucleus of the thal-
amus, to the visual cortices, the primary visual cortex and then throughout the extrastriate
visual areas. These signalsinfluence activity in saccadic control areas viathe lateral intra-
parietal area, the frontal eye field, and even the superior colliculus. The two principal sac-
cadic control areas, the superior colliculus and the frontal eyefields, project inturnto areas
in the brainstem reticular formation that control the speed and position of the rotating eye-
ball. (For areview of saccadic anatomy see Glimcher, 1999.)

Figure 2: In Schall’ s oddball task, eight radially arranged targets appear simultaneously, onein an
oddball color.The animal receives areward if he looks at the oddball immediately after it
appears. When the oddball elicits a movement encoded by the frontal eye field neuron un-
der study (the best movement) firing rates are different than when any other movement is
elicited. The difference between these two firing patterns is apparent about 80ms after tar-
get onset. Current evidence suggests that this difference reflects a neuronal decision about
what movement to produce.

Figure 3: InKrebs' experiment hungry birds of the species parus major stand over aconveyor belt.
An experimenter places mealworm segments of two sizes on the belt in a pseudo-random
sequence. The bird faces a serial decision problem, it must decide which segments to eat
and which to ignore. The decisions the bird makes are influenced by the mean rates at
which both prey types are encountered, the difficulty of capturing and eating the segments,
and the relative values of the two different size pieces. Charnov’s Prey Model predictsthe

quantitative pattern of decisions that birds make with significant precision.
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Figure 4: In Platt’ s experiment monkeys run blocks of trialsin which they must decide whether to
look left or right in order to obtain afruit juice reward. In sequential blockstherelative val-
ues of the two movements are manipulated. Neuronal firing ratesin the lateral intraparietal
area are strongly influenced by the relative value, to the animal, of the movement they en-
code.

Figure 5: In McCabe's Trust and Reciprocity game, a round begins when player one decides
whether to end the gameimmediately or to pass control of the gameto player two. If player
one ends the game both she and player two receive 45 cents. If player one electsto trust
player two then player two must decide how to divide a much larger gain. She can elect
either to keep 405 cents of it for herself or to reciprocate player one strust by turning 180
cents back to player one. McCabe and his colleagues found that humans were much more
likely to trust or reciprocate with other humans than with computer programs. Activity in

an area of prefrontal cortex seemed to be correlated with trusting and reciprocating.
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