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Neural processing is metabolically expensive. The human brain
accounts for 20% of resting oxygen consumption, and half of
this energy drives the pumps that exchange sodium and potas-
sium ions across cell membranes1. Because these pumps are
maintaining the ionic concentration gradients that power elec-
trical signaling by neurons, 10% of a resting human’s energy is
used to keep the brain’s batteries charged. In the rabbit reti-
na, second messenger systems, synapses and ion pumps make
large contributions to a high metabolic rate2,3. Therefore,
when the basic cellular mechanisms for signaling and infor-
mation processing are concentrated in brains and sense organs,
the metabolic demands are considerable.

These metabolic demands could be large enough to influ-
ence the design, function and evolution of brains and behavior.
Comparative studies suggest that the metabolic expense of
maintaining the brain throughout life4, or the demands made
by the developing brain on the maternal energy budget5, have
limited the sizes of primate brains. The human brain’s suscep-
tibility to anoxia and its precise local regulation of cerebral
blood flow also suggest that the supply of energy limits neural
function. If metabolic energy is limiting, then neurons, neur-
al codes and neural circuits will have evolved to reduce meta-
bolic demands. Two elegant theoretical analyses show that
metabolic efficiency can profoundly influence neural coding.
The minimization of metabolic cost promotes the distribution
of signals over a population of weakly active cells6,7.

Although metabolic energy is clearly important in determin-
ing neural function, we lack basic data on the quantitative rela-
tionships between energy and information in nervous systems.
Precisely how much energy must a neuron consume to do a given
amount of useful work, transmitting and processing informa-
tion? How does energy consumption scale with the quantity of
information that neurons handle? We can now address these fun-
damental questions because we have recently measured the quan-
tities of information transmitted by photoreceptors and
interneurons of the intact blowfly retina8 and can use biophysical

data to estimate the amount of energy required to transmit these
signals. We find that information is expensive, and that, for a
given communication channel, the cost per bit increases with bit
rate. Thus metabolic cost can have a profound influence on the
structure, function and evolution of cell signaling systems, neu-
rons, neural circuits and neural codes.

Results
THE METABOLIC COST OF INFORMATION IN A PHOTORECEPTOR

Information transmission rate, measured in bits per second,
is a useful measure of the neural work done by photorecep-
tors and interneurons of the fly compound eye, for the fol-
lowing reasons. Increasing the number of bits transmitted per
cell improves the retinal image by increasing the number of
gray levels coded per second per pixel. A number of studies
conclusively demonstrate that the large monopolar cell (LMC),
the second-order retinal neuron, is optimized to maximize bit
rate9. We have recently measured the rates at which retinal
cells transmit information under daylight conditions8. Cells
were driven by randomly modulating the light intensity of an
LED (Fig. 1), with a depth of modulation (contrast) that
resembled natural signals. Photoreceptors responded to this
random test stimulus with a graded modulation in membrane
potential that encoded the fluctuations in light level (Fig. 1).
The photoreceptor signal is contaminated by noise, both sig-
nal and noise have a Gaussian distribution, and the system is
approximately linear over this natural contrast range. Under
these conditions, we can determine the rate at which the pho-
toreceptor transmits information, I, from measurements of
the power spectra of signal, S(f) and noise, N(f), by applying
Shannon’s equation

We estimated I = 1000 bits per second for the fully light-adapt-
ed cell, but we expect lower rates under natural conditions
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because natural signals contain correlations that are not pre-
sent in our random stimuli.

We can now estimate the cost of a bit of information by
determining the metabolic energy required to code informa-
tion under these fully light-adapted conditions.  We recorded
from five photoreceptors that were stimulated at the same day-
light level, 106 effective photons per receptor per second. These
photoreceptors had an average membrane potential, Em, of -33
± 6 mV. Injection of current yielded an average input resis-
tance of 7.1 ± 1.8 MΩ, giving a mean total conductance for
the single photoreceptor, gtotal, of 141 nS. We incorporate these
electrical data into a simple electrical model of the photore-
ceptor membrane (Fig. 2), based on published biophysical
data. The model calculates the ionic currents that flow across
the membrane during signaling. These ion fluxes define the
rate at which a vigorous Na/K exchange pump10–12 must
hydrolyze ATP to maintain the ionic concentration gradients
that are driving currents across the membrane. Dividing this
rate of ATP consumption, 7.5 · 109 ATP molecules per second,
by the information transmission rate, 1000 bits per second,
gives the metabolic cost for sensory information, 7 · 106 ATP
molecules per bit.

Measurements of the oxygen consumed by isolated insect
retinas confirm that our estimate of ATP consumption, and
hence bit cost, is of the right order of magnitude. In the drone
bee retina13 each photoreceptor consumes 2 ·109 ATP mole-
cules per second, compared with our estimate in the blowfly of
7 ·109 ATP molecules per second. In the blowfly there are
approximately 35,000 photoreceptors per retina14. Conse-
quently, aerobic glycolysis must consume 6.5 · 10–5 mls O2 per
minute to meet our estimated consumption of ATP. The mea-
sured value is almost identical, 6 · 10–5 mls O2 per minute11.

Our value, 7 · 106 ATP molecules per bit, is a lower bound
because photoreceptors will transmit information at lower rates
under natural conditions. Moreover, by basing our cost on electrical
current, we exclude the intermediate steps in phototransduction. A

second-messenger cascade passes the signal
from rhodopsin to ion channel, amplifies
the signal, and consumes energy in at least
two processes, the phosphorylation of inter-
mediates and the transfer of a second mes-
senger, calcium ions, between
compartments15. However, the costs of the
cascade, although appreciable, are unlikely
to inflate consumption by an order of mag-
nitude for the following reason. We find that
a photoreceptor transducing 106 photons
per second consumes 7 · 109 ATP molecules
per second. Consequently the cascade
would have to hydrolyze almost 104 ATP
molecules per transduced photon to equal
the energy demands of the electrical cur-
rent. We conclude that our estimate of 7 ·
106 ATP molecules per bit is a conservative
figure that is strongly supported by inde-
pendent experimental data.

Our costing of phototransduction
suggests an important principle that can
simplify the calculation of neural ener-
gy budgets. Neural signaling and pro-
cessing can involve a cascade of
amplification in which increasing num-
bers of molecules are recruited at each

successive step. The last stage, which often results in the flow
of ionic current across the cell membrane (synaptic trans-
mission), will consume the most energy. This could be why
ion pumps are responsible for over half of the human brain’s
energy consumption3. When ion currents dominate energy
requirements, then reasonable lower bounds for metabolic
costs can be calculated from conductance measurements, as
demonstrated here, without recourse to direct measurements
of oxygen consumption. We will use this principle again when
we consider the chemical synapse.

THE COST OF INFORMATION IN A RETINAL NEURON

Six photoreceptors carrying the same signal converge on a sec-
ond order neuron, the LMC. Each photoreceptor drives the
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Fig. 1. Cells, synapses and signals in
blowfly compound eye. Photoreceptors
and an LMC of the blowfly retina code light
level in a single pixel of the compound eye.
Six photoreceptors carrying the same sig-
nal converge on a single LMC and drive it
via multiple parallel synapses. For clarity,
only two of the six photoreceptors are
depicted. The signals are intracellular
recordings of the graded changes of mem-
brane potential induced by a randomly
modulated light source. Analysis of these
analog responses yielded the rate at which
photoreceptors and LMCs transmit infor-
mation8. The oval inset shows a photore-
ceptor-to-LMC synapse. The presynaptic
site on the photoreceptor axon terminal
(PR), contains synaptic vesicles (v), grouped
around a prominent presynaptic ribbon (p).
This release site faces four postsynaptic
elements, containing cisternae (c). The cen-
tral pair of elements are invariably the den-
drites of the two parallel LMCs, as
captured in this tracing of an electron
microscope section 43.

Light

Photoreceptor

LMC

Fig. 2. The electrical models of photoreceptor and LMC mem-
branes. By estimating the currents required to generate electrical
signals, the models calculate the rates at which pumps (P) must
hydrolyze ATP to sustain electrical signalling. Symbols,
Photoreceptor: gL, light-gated conductance; iL, light gated current;
gK, voltage-gated potassium conductance; iK, potassium current; P,
Na/K exchange pump. LMC: gCl, histamine-gated chloride conduc-
tance; iCl, histamine-gated chloride current; g0, non-specific cation
conductance assumed to oppose chloride conductance; io, non-spe-
cific cation current; P, chloride pump (see Methods).

Photoreceptor LMC
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LMC, with 220 identical parallel synapses, giving 1320 synaps-
es in all (Fig. 1)16. At each synapse a fast neurotransmitter,
histamine, gates chloride channels17 to generate a graded
response in the LMC. This analog signal is an inverted, ampli-
fied and high-pass-filtered version of the photoreceptor input
(Fig. 1). Using the random stimuli applied to photoreceptors,
we found that, as a result of convergence, the LMC is more
reliable than a single photoreceptor, and transmits informa-
tion at a higher rate, 1600 bits per second8.

Again, a simple electrical model (Fig. 2) calculates the cur-
rents that flow during the LMC response, and hence the ATP
consumption by pumps. In the model, the postsynaptic chlo-
ride current is generated by the histamine-gated chloride con-
ductance gCl, with a reversal potential ECl of -65 mV18. The
counter-current that holds the LMC membrane potential
above ECl has not been identified. We assume a nonspecific
cation conductance, g0, with a reversal potential E0 of 0 mV.
If one assumes that the chloride pump is not electrogenic, then
the simple circuit model for the postsynaptic LMC membrane
(Fig. 2) is equivalent to equations 2,3,5 and 6 in the receptor
model (Methods). Inserting published measurements of total
membrane conductance and membrane potential18,19, the
LMC model gives a postsynaptic chloride current in bright
light of 0.66 nA. A chloride pump maintains ECl

20, but it has
not been characterized. Known pumps transfer between 1 and
3 chloride ions per ATP hydrolyzed. Equating the synaptic
influx of chloride ions with pump efflux gives a threefold range
of pump consumption, 1.4 · 109 to 4.1 · 109 ATP molecules
per LMC per second . Dividing by the measured bit rate gives
a range of metabolic costs for information, 9 · 105 to 3 · 106

ATP molecules per bit.
Note that the LMC codes at a lower cost per bit than the

photoreceptor. Although several assumptions had to be made
to calculate ion fluxes and pump rates in LMCs, this conclu-
sion is likely to be correct. The LMC has a lower membrane
conductance18 and, through redundancy reduction and sig-
nal convergence9, transmits information at a higher rate8. In
addition, photoreceptors employ a large membrane area to
capture and transduce photons, and this increases their over-
all conductance.

THE COST OF INFORMATION AT A CHEMICAL SYNAPSE

Each of the 1320 photoreceptor synapses driving an LMC is a
tetrad with an average contact area 200 nm × 500 nm and a
prominent presynaptic bar (Fig. 1). From the number of iden-
tical synapses16 and the information rates in a photoreceptor
and an LMC, we have previously calculated that each synapse
transmits 55 bits per second8. Because identical synapses con-
tribute equally to the total LMC chloride conductance, gCl, the
post-synaptic chloride current at one synapse accounts for
1/1320 of the LMC ATP consumption, calculated above.
Dividing consumption by transmission rate gives a range of
metabolic costs for information at a single chemical synapse
of 2 · 104 to 6 · 104 ATP molecules per bit.

This estimate of synaptic cost is based on postsynaptic cur-
rent and ignores all presynaptic mechanisms. On present evi-
dence, this simplification will not significantly change our
conclusions. Using experimental data, we estimate that the
costs of neurotransmitter uptake and vesicle refilling total less
than 10% of the postsynaptic current (see Methods). Estimates
of presynaptic calcium flux vary from 200 to 1.3 ·104 ions per
vesicle discharged21. With 240 vesicles released per second (see
Methods), and 1 calcium ion pumped per ATP22, presynaptic
calcium fluxes would add from 2% to 60% to our synaptic
costs. The energy used to recycle vesicles is unknown but,
given a vesicle discharge rate of 240 per second, it would need
to be 3 · 103 ATPs per vesicle to equal the postsynaptic cost.
We conclude that our lower bound for synaptic cost is of the
right order of magnitude and, on the present evidence, with-
in a factor of two of the real cost.

BIT RATE VERSUS COST IN NOISE-LIMITED SYSTEMS

The low capacity (55 bits per second) synapse transmits at a
much lower cost per bit than the high capacity (1600 bits per
second) interneuron, the LMC (Fig. 3). Thus, as in many com-
munication systems, a lower transmission rate is cheaper. This
trade-off between cost and capacity is enforced by the stochastic
nature of cell signaling. Cost is proportional to N, the number of
elementary stochastic events that produce signals, such as pho-
ton absorptions, channel openings, synaptic vesicle releases,

article

Fig. 3. The cost of a bit of information plotted against information
transmission rate for a single chemical synapse, a hypothetical LMC
using spikes, and the graded signals of a photoreceptor and an LMC.
The ranges cover assumptions made in calculating costs. For the
transmission rate of the hypothetical spiking LMC, we use the high-
est value yet measured in a sensory neuron23.
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Fig. 4. The rise in cost per bit with bit rate is illustrated by modeling
the transfer of signals from a photoreceptor (PR) to an LMC via a
parallel array of ns identical synapses. Each synapse carries an identi-
cal signal that is contaminated by noise. The bit rate for transmission
from photoreceptor to LMC is increased by using more synapses to
improve the overall signal-to-noise ratio (see Methods). The num-
ber of synapses involved, ns, is indicated on the scale to the right of
the graph. The values of rate and cost are based on estimates of sig-
nal and noise power spectra at a single synapse8 and on estimates of
the cost of synaptic transmission derived in this paper.
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receptor or G-protein activation. The signal-to-noise power ratio
also increases as N, and information as log2(N) (see Methods), to
produce a savage law of diminishing returns. We illustrate this
relationship (Fig. 4) by modeling the array of parallel synapses
that connects a photoreceptor to an LMC (see Methods). To
increase the rate at which information is transmitted between
this pair of cells, the number of synapses must be increased (see
Methods, eqn. 7), and this increases the cost of transmitting a
bit (Fig. 4). It would be more economical to transmit the extra
information through a second pair of cells. Thus, in the face of
fundamental noise limitations, energy efficiency promotes the
division of information among parallel pathways, each of low
capacity, so favoring the use of parallel messenger systems with-
in cells, and sparse coding in neural networks6. A similar con-
clusion has been reached independently by extrapolating from an
energy-efficient electronic cochlea to neural mechanisms7.

THE COST OF TRANSMITTING INFORMATION BY SPIKES

The photoreceptors and interneurons of the fly retina use grad-
ed (analog) responses because they carry information at high
rates. Perhaps spike coding is more economical. We investigated
this possibility by estimating the cost for spike transmission
down an LMC and comparing it to our estimate of the analog
cost (derived above). The LMC’s graded synaptic signal is con-
ducted along its axon to output synapses, approximately 425 µm
away. Transmission is passive19; consequently its cost is includ-
ed in generation of postsynaptic LMC response and therefore is
9 · 105 to 3 · 106 ATP molecules per bit. Were a spike to carry
information over this same distance, it would transiently depo-
larize the entire length of the axon by 100 mV. The known axon
capacitance19 defines the minimum sodium ion influx needed
to propagate the spike and hence a pump consumption of 9 ·
106 ATP molecules per spike. A sensory spike carries between 1
and 10 bits of information23, giving a range of costs, 9 · 105 to
9 · 106 ATP molecules per bit. This cost per bit brackets the ana-
log costs (Fig. 3), leading us to conclude that action potentials
do not greatly enhance metabolic efficiency over short distances,
at least in this unmyelinated insect axon. A primary function of
spikes could be to reduce the effects of synaptic noise7 by tight-
ly coupling vesicle release to presynaptic action potentials.

Discussion
IS INFORMATION COSTLY?
Metabolic efficiency will only be an important determinant of
the evolution and design of signaling systems when metabolic
costs impose a significant penalty on the parent organism. Our
estimate of photoreceptor ATP consumption in bright light is
equivalent to 8% of the total consumption by the resting fly24

and, if we add to this the consumption by LMCs, this figure
approaches 10%. This consumption compares with a figure for
the human brain of 20%, which is widely considered to be sig-
nificant1,3 and could have shaped its evolution25. The signifi-
cance of retinal ATP consumption is reinforced by comparative
studies. Blowfly photoreceptors consume more energy, gram
for gram, than active mammalian muscle, metabolic invest-
ment in vision varies widely between insect species, in accor-
dance with lifestyle and habitat (Laughlin and D.C. O’Carroll,
unpublished results), and the visual systems of burrowing and
cave-dwelling species are greatly reduced26.

WHY IS NEURAL INFORMATION COSTLY?
Synapses and cells are using 105 to 108 times more energy than
the thermodynamic minimum. Thermal noise sets a lower

limit of k · T Joules for observing a bit of information (k,
Boltzmann’s constant; T, absolute temperature, 290oK)27,28

and the hydrolysis of one ATP molecule to ADP releases about
25 kT 29. It is beyond the scope of this paper to analyze the
factors that increase the cost of information by five to eight
orders of magnitude relative to the thermodynamic minimum,
but elementary observations are instructive. At the heart of
most cell signaling systems are protein molecules that code
information by changing conformation. We can regard such
a signaling molecule as a switch that codes a binary digit, a
single bit, by flipping from one conformation to another. How
fast can this molecule switch, and how much energy is need-
ed? The motor protein kinesin cycles conformation approxi-
mately 100 times per second, hydrolyzing 1 ATP per cycle30,31

and does considerable mechanical work. Freed from heavy
mechanical work, ion channels change conformation in
roughly 100 µs32. In principle, therefore, a single protein mol-
ecule, switching at the rate of an ion channel with the stoi-
chiometry of kinesin, could code at least 103 bit per second at
a cost of 1 ATP per bit. We find that a molecular system, the
chemical synapse, transmits at only 5% of the rate of the sin-
gle molecule but at 104 times the cost per bit. Highly special-
ized cells, the photoreceptor and the LMC interneuron,
achieve the same bit rate as the molecular switch, but at 106

times the cost per bit. These elementary comparisons suggest
that costs soar when molecules are organized into cellular sys-
tems. At least two biophysical constraints will contribute to
these systems’ costs. First, there is the uncertainty associated
with molecular interactions. The stochastic nature of recep-
tor activation (photon absorption), of molecular collision, of
diffusion, and of vesicle release, degrades information by
introducing noise (eqns. 1 and 7), thereby substantially
increasing costs. Secondly, energy is required to distribute sig-
nals over relatively large distances. We suggest, therefore, that
the high metabolic cost of information in systems is dictated
by basic molecular and cellular constraints to cell signaling,
as independently proposed by Sarpeshkar7 (see also
Sarpeshkar, R; Ph.D. dissertation, California Institute of Tech-
nology, 1997). Because these systems’ costs are substantial,
further investigation of the metabolic efficiency of cell sig-
naling has the potential to provide insights into the function,
design and evolution of molecular signaling complexes, sec-
ond messenger systems33, sensory receptors, neurons, neural
networks and neural codes.

Methods
MEASURING PHOTORECEPTOR MEMBRANE POTENTIAL AND CONDUCTANCE.
Established techniques8,34,35 were used to record intracellular respons-
es from photoreceptors R1-6 in the intact retina of the blowfly (Cal-
liphora vicina) to calibrate the effective intensity of illumination of
each cell by counting quantum bumps and to measure membrane
resistance by injecting randomly modulated current via a single elec-
trode-switched clamp.

CALCULATING PHOTORECEPTOR ATP CONSUMPTION Our circuit model of
the photoreceptor membrane (Fig. 2) is based on biophysical mea-
surements34,36. The light-gated conductance, gL, admits a current, iL,
with a reversal potential, EL = 5 mV, given by

iL = (Em – EL) · gL (2)

A voltage-gated, delayed-rectifier conductance, gK, provides a counter-
balancing current of potassium ions, iK, reversal potential EK = -85
mV, given by

iK = (Em – EK) · gK (3)

The vigorous electrogenic pump10–12 extrudes three sodium ions and
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takes up two potassium ions for every ATP molecule hydrolyzed. The
pump maintains the internal potassium concentration by accumu-
lating potassium ions at a rate equal to the outward potassium cur-
rent, iK, and this specifies a net pump current,

(4)

Equating all currents across the model membrane

iK + iL + iP = 0
(5)

and specifying that total membrane conductance

gtotal = gK + gL (6)

gives five equations (2-6) that specify the flow of ions in this circuit.
Inserting our measurements of Em and gtotal, and published values of
EL, & EK,

34,36, we solve to obtain the currents flowing across the mem-
brane of a single photoreceptor in daylight:

iL = 3.6 nA

iK = 2.4 nA

Note that the ratio between currents, iL:iK, equals the Na+:K+ ratio in
the pump, and the system maintains both sodium and potassium con-
centrations. Inserting the value for iK in equation 4 gives the pump
current, and hence the rate of ATP hydrolysis in a single photorecep-
tor as 7.5 · 109 ATP molecules per second.

THE PRESYNAPTIC COSTS OF NEUROTRANSMITTER RELEASE AND UPTAKE.
Transmitter circulates by being released from vesicles into the synap-
tic cleft, taken up from the cleft into the presynaptic terminal, and
then pumped back into vesicles. The costs of release (presynaptic cal-
cium fluxes, vesicle docking and release) are likely to be compara-
tively small because a large number of transmitter molecules are
released with each vesicle. Work on the output synapses of barnacle
photoreceptors37 suggests that histamine is removed from the cleft by
a sodium-dependent monoamine transporter in the presynaptic ter-
minal that cotransports three sodium ions per amine molecule38.
Restoration of these three sodium ions by the exchange pump requires
one ATP molecule. We assume that synaptic vesicles are loaded by a
monoamine/proton exchange pump39 that exchanges two protons,
and hence hydrolyzes 0.67 ATP molecules, for every histamine translo-
cated. Combining these two mechanisms, the rate of ATP hydrolysis is
1.67 times the circulating flux of histamine.

Three methods are used to estimate the histamine flux. The first is
from the vesicle release rate. Analysis of synaptic noise40 indicates
that, at any one time, an LMC is being driven by at most 160 noise
events, each with a time constant of 0.5 ms. If a noise event is a vesi-
cle discharge, every synapse is discharging 240 vesicles per second.
The average vesicle outer diameter is 35 nm and the membrane thick-
ness 4 nm41. With a 0.1 M transmitter concentration22, each vesicle
contains 600 histamine molecules. Multiplying vesicle content by
release rate gives a histamine flux of 1.4·105 molecules per synapse
per second. The second calculation is from the affinity of the hista-
mine-gated chloride channels for histamine and the dimensions of
the synaptic cleft. The synapses are tonically active in the midpoint
of their operating range. At the very most, approximately half of the
chloride channels are being gated at any one time. This requires a
minimum average histamine concentration in the cleft of 40 µM42.
The area of synaptic contact measures 500 nm x 200 nm, and the cleft
is 20 nm across, giving 50 histamine molecules per cleft. The brevity
of the synaptic impulse40 response suggests that histamine is cleared
from the cleft in approximately 1 ms, giving a histamine flux of 5 ·104

molecules per synaptic cleft per second. The third calculation is from
the histamine-gated chloride conductance, gCl, which is 13 nS from
our biophysical model based on measurements of LMC input resis-
tance. A single histamine-gated chloride channel has a conductance
of 50 pS and binds three histamine molecules to open for 0.5 ms42.
Consequently an LMC’s chloride conductance binds 1.6·106 hista-
mine molecules per second, corresponding to 1.2·103 histamine mol-
ecules per synapse per second. An LMC is one of four postsynaptic
elements, and if each histamine released presynaptically is bound once
by a chloride channel before being taken up, the necessary histamine

flux is 5 · 103 histamine molecules per synapse per second. Note that
the second and third calculations ignore the losses of histamine by
diffusion and by uptake from the cleft prior to channel activation.

To avoid underestimating synaptic costs, we take the highest (first)
estimate of histamine flux, which gives an ATP consumption of 1.67
× 1.4 · 105 or roughly 2 · 105 ATP molecules per synapse per second.

BIT COST VERSUS RATE FOR AN ARRAY OF PHOTORECEPTOR-TO-LMC SYNAPS-
ES. We consider a signal carried from photoreceptor to LMC by a par-
allel array of identical synapses. The power density spectrum for the
optimal signal, S(f), and for noise, N(f), at a single synapse has been
estimated experimentally8, using a signal of rms contrast 0.316. An
array of ns synapses transmits information at a rate, I, of

The rate of ATP consumption by the array is ns times the consumption
by a single synapse, which we calculate from the postsynaptic chlo-
ride flux derived in the main body of the text to be 4 · 106 ATP mole-
cules per second.
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