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1. Introduction

What isvisud texture, and how might astudy of the visua perception of texture help usto
better understand human vison? In this chapter we will atempt to give the reeder afed for how the
study of texture perception is useful both in understanding the impact of texture itsdlf, aswell asin
providing a better understanding of basic visua mechanisms that respond not only to texture but to
al visud gimuli. Thisreview will be rdatively brief and, of necessity, incomplete. We hopeto give
an overview of the different research areas concerned with texture perception and of the current
issues. For alonger early review, we refer the reader to Bergen (1991).

Congder thescenein Fig. 1. The border between the sky and the trees/grassinvolves a
difference in luminance, one that would easily be sgnded by alinear mechanism such asasmple
cdl in primary visud cortex. The boundary between the zebras and the background dso involves a
change in chromaticity (although not visble in the black-and-white image in Fg. 1), which might be
sgnaled by color-opponent mechanisms. But, the borders between pairs of zebrasinvolve neither a
differencein color nor in average luminance. These bordersinclude stretches of boundary that are
black on one side and white on the other, stiretches where the colors are reversed, and stretches
where thereis no local visud information to sgnd the boundary (where black abuts black, or white
abutswhite). Nevertheess, we percelve a smooth, continuous occlusion boundary at the edge of
eech animd. Itisasif thevisud system possesses the cgpability of segmenting regions of theimage
based on aloca texturd property, such as separating “vertica stuff” from “horizontal stuff.”

Thus, textureis aproperty thet is satigticaly defined. A uniformly textured region might be
described as “ predominantly verticaly oriented”, * predominantly smdl in sca€’, “wavy”, “subbly”,

“likewood grain” or “like water.” As Adelson and Bergen (1991) put it, texture is a property of
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“quff” in the image, in contradistinction to visud features such as lines and edges, the “things’ in the
image (andogous to the linguidtic difference between mass nouns like “water” and count nouns like
“mouse’).

Another way of characterizing visud texture isin the usesto which it might be put. Textureisa
property of animage region. Regionsin the visud fied can be characterized by differencesin
texture, brightness, color or other attributes. Relatively early processesin the visud system can use
texture information to perform atentative segmentation of the visud image into regions to ease the
processing load on subsequent computationa stages. The andysis of a Sngle textured image region
can lead to the perception of categorica labelsfor that region (“ Thislooks likewood.” or “This
surface looks dippery.”). The appearance of texture alows the observer to determine whether two
textured regions appear to be made of the same or different Stuff. If two abutting image regions have
different surface texture, this may lead to the detection of the intervening texture border (like the
border between adjacent zebrasin Fig. 1). Such texture-defined boundaries may then be used to
segment figure from ground and for 2-dimensiona shape identification. Findly, continuous changes
in texture properties may result in the percept of 3-dimensiona shape (Gibson 1950). A focus of
much research in this areais to characterize the mechanisms and representational schemes used to
characterize texture, and thus to determine whether the same underlying mechanisms are responsible

for each of the above perceptua capabilities.
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2. Texture Segregation

Texture Features

Much of the work on the perception concerns the ability of observersto effortlesdy
discriminate certain texture pairs. For example, Fig. 2 shows rectangular regionsof X’sand of T's
on abackground of L’s. Observers can perceive effortlesdy that there isaregion of X’ s different
from the background, that this region has smooth, continuous borders, and that these borders form
arectangular shape. Thisisreferred to as the segregeation of figure from ground or segmentation of
the image into multiple, homogenous regions. At the same time, none of these observations may be
meade about the region of T’ swithout use of effortful scrutiny of the individud texture elements one
by one.

This sort of observation led a number of investigators to consider what aspects of image
structure led to pre-attentive segregation of textures. Beck and Attneave and their colleagues (Beck
1972, 1973; Olson and Attneave 1970) hypothesized that textural segmentation occurs on the basis
of the distribution of smple properties of “texture dements’ where the Smple properties were things
like the brightness, color, size, and the dopes of contours and other eemental descriptors of a
texture. Marr (1976) added contour terminations as an important feature.

Julesz' s early efforts were centered around image datistics. He first suggested (Julesz et dl.
1973) that differencesin dipole satistics were most important for texture pairs to segregate (these
are the joint image statistics of the gray levels found at the opposite ends of aline segment of a
particular length and orientation, asit is placed at dl possible image locations, gathered for dl
possible pairs of gray levels, dipole lengths and orientations). But, counterexamples to this were

found (e.g., Cadlli and Julesz 1978). It was then suggested that textures with identica third-order
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datistics would prove indiscriminable (andogous to dipole statistics, these are joint image Satigtics
of the gray levels found at the three corners of atriangle of a particular Sze, shape and orientation,
asitisplaced a al possble image locations, gethered for dl possble triplets of gray leves, triangle
shapes, sizes and orientations). Again, counterexamples to this hypothesis were found (Julesz,
Gilbert and Victor 1978).

Julesz noticed that the counterexamples were suggestive of an dternative explanation for
texture segregation, smilar to those of Beck and Marr. Julesz found that texture pairs that
segregated eadily but had identica 3rd-order satistics o differed in the amount of an easly
discernible image feature (e.g., Cadlli, Julesz and Gilbert 1978). The task then became one of
identifying the ligt of image features, which Julesz (1981) dubbed “textons’, that were sufficient to
explain segregation performance. Theinitid list of textons included such features as Sze, orientation,
line terminations and line crossngs.

It has been noted that the 3rd-order statistics used by Julesz were “ population Satistics” That
is, the counterexamplesto Julesz’ various conjectures never had identica 2nd- or 3rd-order
gatigtics within the actud, finite images observed. Rather, the identity was over al possble images
that could have been generated by the process that generated the particular ingtantiation of texture
currently in view. Infact, for continuous images, image pars with identica 3rd-order gatistics must
be identica images, rendering that verson of the conjecture trivia (Y elott 1993), and finite, discrete
images are determined by their dipole satistics (Chubb and Y dlott 2000). On the other hand,
Victor (1994) makes the case for the appropriateness of the use of population statistics for
theorizing about texture segregation.

The feature- based theories were echoed in research in the visud search field (Treisman 1985).

Effortless “pardld” search for atarget pattern in afield of distracter patterns was found whenever
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the target and digtracters differed in afeature (e.g., Size, orientation, etc.) Smilar to the texton
features that led to effortless texture segregation. For example, atarget X was effortlesdy and
immediatdly located in afield of distracter L’'s. However, when the target was a T, the task became
effortful and required serid scrutiny of the texture eements, requiring more time with every
additiond distracter added to the stimulus (Bergen and Julesz 1983). When the choice of target and
distracters requires the observer to attend to a specific combination of two features, search
becomes difficult and observers often perceive “illusory conjunctions’ between features of
neighboring objects (Treisman and Schmidt 1982). Somewhat ana ogous effects using texture
eements having combinations of two features have been noted in texture segregation as well
(Papathomas et d. 1999). However, Wolfe (1992) suggests that texture segregation and parallel
visua search do not dways follow the same rules.

A number of other observations have been made concerning when texture dement stimuli do or
do not segregate. Beck (1982) has pointed out that textures segregate based not only on the
particular texture elements used, but dso on their arrangement, reminiscent of the Gestdt laws of
figurd goodness. Asin the search literature (Treisman and Gormican 1988), texture segregation
may show asymmetries (Beck 1973; Gurnsey and Browse 1989). For example, a patch of
incomplete circles will easly segregate from a background of circles, whereas the reverse pattern
results in poor segregation. It has been suggested thisis due to a difference in the variability of
responses of underlying visua mechanisms to the two possible texture e ements (Rubengtein and
Sagi 1990).

Nothdurft (1985) suggested that finding an edge between two texturesis anadogous to finding a
luminance-defined edge. To determine aluminance boundary involves locating large val ues of the

derivative of luminance (the luminance gradient) across animage. Finding texture boundaries might
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involve the determination of other aspects of image structure (loca scde, locd orientation, etc.), and
segregation would then result from large vaues of the “ structure gradient.”

Findly, much of the literature assumes that effortless texture segregation and pardle visud
search aretruly effortless. That is, they require no selective attention to operate (demonstrated by,
e.g., Braun and Sagi 1990). However, Joseph, Chun and Nakayama (1997) had observers perform
an effortful, secondary task and noticed alarge decrement in search performance in a search task
that typically yields performance independent of the number of distracters. Thus, it is possible that
even pardld search and, by extension, effortless texture segregation still require selective visud
atention. Alternatively, texture segregation may not require foca visud atention, but attention may
be used to ater the characteristics of visua mechanisms responsible for texture segregation (e.g.,

Y eshurun and Carrasco, 2000). Early literature also assumed that texture segregetion was
effortlessin the sense of being “immediate’. However &t least some textures take subgtantia time to
process (e.g. Sutter and Graham 1995) thus undermining the notion that preettentive texture
segregation is dways immediate and effortless.

We have treated texture asif it is somehow an isolated cue that can signa the presence,
location and shape of an edge. However, texture can co-occur in a simulus with other cuesto edge
presence such as luminance, color, depth or motion. Rivest and Cavanagh (1996) showed that
perceived edge location was a compromise between the position signaled by texture and by other
cues (motion, luminance, color). In addition, localization accuracy was better for 2-cue than for
dangle-cue stimuli. Landy and Kojima (2001) found that different texturd cues to edge location
were combined using aweighted average, with greater weight given to the more reliable cues. This
is analogous to the cue combination scheme that has been seen with multiple cues to depth

(indluding depth-from-texture) by Landy, Maoney, Johnston and Y oung (1995), among others.
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Current Models of Texture Segregation

How might one model the aspects of texture segregation performance we have just surveyed?
If an edge is defined by a difference in luminance (atypica light/dark edge), then a band pass linear
spatid filter smilar to acortical ample cal can detect the edge by producing a pesk response a the
location of the edge. But, atypicd texture-defined edge (e.g., Figs. 2 and 4A) hasthe same
average luminance on ether sde of the edge and thus will not be detected by any purely linear
mechanism.

Severd early investigators (e.g. Beck 1972; Julesz 1981) suggested that observers calculate
the local density of various image features, and that differencesin these texton or feature satistics on
either Sde of atexture-defined edge resultsin effortless texture segregation. However, it was never
clearly described exactly what an image feature was and how it would be computed from the retinad
image. Theimage features discussed (eg. lines of different dopes, line terminations and crossings)
were clearly tied to the kinds of stimuli employed in most texture studies of the period (basicdly,
pentand-ink drawings), and would not be applied easily to naturd, gray-scae images.

An dterndtive line of modeling suggests that we need look no further than the orientation- and
spatid frequency-tuned channds dready discovered in the spatia vision literature through
summation, identification, adaptation and masking experiments using sSine wave grating simuli (De
Vaoisand De Vdois 1988; Graham 1989, 1992). For example, Knutsson and Granlund (1983)
suggested that the distribution of power in different spatid frequency bands might be used to
Segregate natural textures and ran such a computational modd on patchworks of textures drawn
from the Brodatz (1966) collection (a standard collection of texture images often used in the

computationd literature).
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Bergen and Addson (1988) pointed out that even the exampleof X’'s, L’sand T's (Fig. 2)
could be accounted for by the digtribution of power in isotropic channels smilar in form to cells
found in the LGN and layer 4 of primary visud cortex. Further, they showed thet if the Sze of the
X’swas increased to effectively equate the dominant spatia frequency or “scalé’ of the different
texture dements, the segregation of X’s from abackground of L’s could be made difficult. This
was strong evidence againg the texton or feature theories.

A plethoraof smilar models based on filters selective for spatid frequency and orientation have
been investigated (Bovik, Clark and Geider 1990; Cadlli 1985; Fogd and Sagi 1989; Graham
1991; Landy and Bergen 1991; Mdlik and Perona 1990; Sutter, Beck and Graham 1989; Turner
1986; for an dternative view, see Victor 1988). These models are so Smilar in basic design that
Chubb and Landy (1991) referred to this class as the “back pocket model of texture segregation,”
as texture perception researchers pull this modd from their back pocket to explain new phenomena
texture segregation.

The basic back pocket modd consists of three stages (Fig. 3). First, aset of linear spatial
filters, akin to the smple cels of primary visud cortex, is applied to the retind image. Second, the
outputs of the firg-stage linear filters are transformed in anonlinear manner (by haf- or full-wave
rectification, squaring and/or gain control). Findly, another stage of linear filtering is used to
enhance texture-defined contours. If this third stage consisted only of spatiad pooling, the resulting
outputs would resemble those of cortical smple cdls. But, often this linear filter is modded as
bandpass and orientation-tuned, so that it enhances texture-defined edges much as an orientation:
tuned linear spatid filter enhances luminance-defined edges.

Thisprocessisillustrated in Fig. 4. Fig. 4A shows an orientation-defined texture border

(Wolfson and Landy 1995). In Fig. 4B avertically-oriented spatid filter has been gpplied. The
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responses are larger to the verticaly-oriented portion of the image, but these responses are both
grongly postive (when the filter is centered on a texture e ement) and negative (when thefilter is
positioned off to the Side of atexture ement). Asaresult, the average vaue of the output is
identical on ether Sde of the texture border, but on the left the response variability is gregter. In
Fig. 4C the responses of Fig. 4B have been rectified, resulting in larger responsesin the area of
verticaly-oriented texture. Findly, in Fig. 4D a2nd-order, larger scae, verticaly-oriented spetid
filter has been gpplied, resulting in a pesk response at the location of the texture-defined edge. For
a detection experiment (*Was there a texture-defined edge in this briefly-flashed simulus’ or “Were
there two different texture regions or only one?’), amode would try to predict human performance
by the strength of the peak responsein Fig. 4D as compared to peaks in responses to background
noisein simuli not containing texture-defined edges. For further examples, see Bergen (1991) and
Bergen and Landy (1991).

A wide variety of terminology has been used to describe the basic modd outlined in Fig. 3,
meking the literature difficult to approach for the neophyte. The basic sequence of a spatid filter, a
nonlinearity and a second spatid filter has been called the back pocket model (Chubb and Landy
1991), aLNL (linear, nonlinear, linear) modd, a FRF (filter, rectify, filter) modd (e.g. Dakin,
Williams and Hess 1999), second-order processing (e.g. Chubb, Olzak and Derrington 2001) or a
smple or linear channd (thefirgt L in LNL) followed by a comparison-and-decision stage (e.g.
Graham, Beck, and Sutter 1992),

About the term* 2nd-order” . The phrase “2nd-order” can be particularly troublesome. In
some hands, and aswe will useit here, it merdly refers to the 2nd-sage of linear filtering following
the nonlinearity in amode like that of Fig. 3. As such, it has been gpplied to modelsin awide

variety of visua tasks (Chubb et d. 2001). But, “2nd-order” has another technica definition that has
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as0 been used in amilar contexts. If the nonlinearity in Fig. 3 isa squaring operation, then the pixels
in the output image (after the second stage of linear filtering) are dl computed as 2nd-order (i.e.,
quadratic) polynomias of the pixelsin the modd inpuit.

In this chapter, we will refer to the modd of Fig. 3 as a 2nd-order model, meaning that it
contains a 2nd-order linear spatid filter. Of necessty, this 2nd-order linear filter must follow an
intervening nonlinearity. Otherwise, there would Smply be two sequentid lineer filterswhich is
indistinguishable from asingle, lumped linear spatid filter. We will use this term regardless of the
polynomid order of the intervening nonlineearity.

Thereisdso amore generd use of “2nd-order”. In this usage a 2nd-order entity (e.g., a
neuron) pools, after some intervening nonlinearity, the responses from a number of other entities
(called 1t-order) but, in this more generd usage, the 1<t -order entities do not form alineer filter
characterized by a single spatia weighting function asthey do in Fig. 3. Rather, the 15-order
entities can be an assortment of neurons sengtive to various different things (e.g. different
orientations or different patia frequencies). See the introduction to Graham and Sutter (1998) for a
brief review of such generd suggestions.

3rd-order models. 2nd-order models are not the end of the story. For example, Graham,
Sutter, and Venkatesan (1993) used an e ement-arrangement texture simulus congsting of two
types of dements, arranged in stripes in one region and in a checkerboard in another region.
Congder the case where each texture dement is a high frequency Gabor pattern (awindowed sine
wave grating) and the two types of elements differ only in spatid frequency. Consder a2nd-order
modd like that just described with the first linear filter tuned to one of the two types of Gabor
patches, and the second linear filter tuned to the width and orientation of stripes of eements. This

2nd-order modd would yield a response to these € ement-arrangement textures that was of the
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same average levd dthough of high contrast in the striped region and low contrast in the checked
region. To reved the texture-defined edge between the checkerboard and striped regions,
therefore, requires another stage of processing, which could be a pointwise nonlinearity followed by
an even larger-scale linear spatid filter (another NL) thus producing a sequence LNLNL. For an
illugtration of such amode’ s responses see Graham, Sutter and Venkatesan (1993), Fig. 4.

Here we will cal this LNLNL sequence a 3rd-order modd. But, to avoid confusion, let us
note that Graham and her colleaguesrefer to thefirst LNL asa*®complex channd” or “2nd-order
channd” and the finad NL is an instance of whet they cdl the comparison-and-decision stage.

About the terms“ Fourier” and “ non-Fourier” . Thereisaso possble confusion about the
terms Fourier and non-Fourier. A gimulus like that in Fig. 4A in which the edge can be found by
the model in Fig. 3 has been referred to as “non-Fourier” (first gpplied to motion stimuli by Chubb
and Sperling 1988). The term was used because the Fourier spectrum of this stimulus does not
contain components that correspond directly to the texture-defined edge. But some others (e.g.,
Graham and Sutter 2000) have used the term “Fourier” channelsfor the first lineer filters (the smple
channds) in Fig. 3 and reserved the term “non-Fourier” for the complex channds (theinitia LNL) in
what we called third-order models above (LNLNL).

This confusing terminology is the result of a difference in emphasis. In this chapter we
concentrate on models that localize (i.e., produce a peak response at) edges between two abutting
textures.. But, others (e.g. Graham and Sutter 2000; Lin and Wilson 1996) have emphasized
response measures that can be used to discriminate between pairs of textures (whether
samultaneoudy present and abutting or not) by any later, nonlinear decison process. Thus, finding
the edge in an orientationdefined texture like that of Fig. 3 is, in Graham and Sutter’s terms,

“Fourier-based” as the power spectra of the two congtituent textures differ, whereas finding the
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edge in a Gabor- patch dement-arrangement texture like that of Graham, Sutter, and Venkatesan
(1993) is*non-Fourier-based” as the power spectra of the two congtituent textures do not differ.
Model Specification

The models of texture segregation just described are complicated, with many details that
require ducidation. Aretheinitid linear filters of a 2nd-order pathway the same spatia filters asthe
gpatid frequency channds that have been described using grating experiments? What is the nature of
the following nonlinearity? Are there fixed, 2nd-order linear filters and whet istheir form? Thisisan
area of current, active research and most of these issues have not been convincingly decided.

Graham, Sutter and Venkatesan (1993) and Dakin and Marescha (2000) provide evidence
that the initia spatid filtersin a2nd-order pathway used to detect contrast modulations of texture
are themsdlves tuned for spatia frequency and orientation. In the same article, Graham and
colleagues dso demondrated thet the initid spatid filtersin a 3rd-order pathway (their “ complex
channdls’) were orientation and spatia-frequency-tuned as well.

The back pocket modd includes a nonlinearity between the two stages of linear spatid filtering
that is required to demodulate the input stimuli. For smdl 1gt-order spatia filters, Chubb,
Econopouly and Landy (1994) provided atechnique caled histogram contrast andysis that alowed
them to measure aspects of the static nonlinearity, showing thet it included components of higher
order than merely squaring the input luminances. Graham and Sutter (1998) found that this
nonlinearity must be expansve. They aso (Graham and Sutter 2000) suggest that again control
mechanism acts as an inhibitory influence among multiple pathways both of the type caled 2nd-
order and 3rd-order here.

First-order spatia frequency channds were first measured usng sine wave grating stimuli and

various experimenta paradigms including adaptation, masking and summation experiments
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(reviewed in Graham 1989). Recently, researchers have used anal ogous experiments to examine the
2nd-order lineer filters. To do S0, researchers hope to deliver to the 2nd-order filter something like
the sine wave grating stimuli of classic spatia frequency channd studies. The usud ploy isto usea
gimulus that has a sine wave (or Gabor) pattern that is used to modulate some aspect of textura
content across the stimulus. The assumed 1st-order filter and subsequent nonlinearity demodulate
this gimulus, providing asinput to the 2nd-order linear filter anoisy verson of the intended grating
or Gabor pattern.

Studies of texture modulation detection have revealed a very broad-band 2nd-order texture
contrast sengitivity function (CSF) using avariety of texture modulations including contrast
(Schofield and Georgeson 1999, 2000; Sutter, Sperling and Chubb 1995), loca orientation content
(Kingdom, Keeble and Moulden 1995) and modulation between verticaly- and horizontaly-
oriented filtered noise (Landy and Ternes 1995). This function isfar more broad-band than the
corresponding luminance CSF. A demondration of this effect is shown in Fig. 5A. A modulator
pattern is used to additively combine avertica and horizontal noise texture. The modulator
increases in spatid frequency from left to right, and in contrast from bottom to top. Asyou can see,
the texture modulation becomes impossible to discern a gpproximately the same leve for dl spatia
frequencies. The sample datain Fig. 5B confirm this observation.

Evidence for multiple, 2nd-order filters underlying this broad 2nd-order CSF has been
equivocal, with evidence both pro (Arsenault, Wilkinson and Kingdom 1999; Schofield and
Georgeson 1999) and con (Kingdom and Keeble 1996). Many studies have found texture
discrimination to be scae-invariant, suggesting the existence of alink between the scde of the
corresponding 1st- and 2nd-order spatid filters (Kingdom and Keeble 1999, Landy and Bergen

1991, Sutter et d. 1995). It has aso been suggested that the orientation preferences of the 1st- and
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2nd-order filters tend to be digned (Dakin and Marescha 2000; Wolfson and Landy 1995). This
dignment of 1~ and 2nd- order filters has aso been supported for element-arrangement stimuli thet
require a 3rd-order model to detect the texture-defined edges (Graham and Wolfson 2001).

If thereis an obligatory link between the scales of the 1st- and 2nd-order filters, this suggests
that the preferred 2nd-order scale should depend on eccentricity. Thiswasfirst demonstrated by
Kehrer (1989) who noted that performance on an orientation-defined texture- segregation task at
fird improves as the target texture moves into the periphery, and then falls as the eccentricity further
increases. The poor foveal performance was dubbed the central performance drop (CPD). This
argument that the CPD is due to the relation between the scde of the 2nd-order pattern and the
loca scale of the 2nd-order filter has been made by Y eshurun and Carrasco (2000) who, in
addition, suggested that the 2nd-order spatid filters are narrowed as a consequence of the
dlocation of sdective attention.

The temporal properties of the 1st- and 2nd-order filters are not well understood athough
someinformation is available (Lin and Wilson 1996; Motoyoshi and Nishida 2001; Schofield and
Georgeson 2000; Sutter and Graham 1995, Sutter and Hwang 1999).

The posshility that the wiring between 1t-order and 2nd order filters is more complicated
than that shown in Fig. 3 remains open aswell (e.g. gopendix in Graham and Sutter 1998; Mussap
2001) with some particular interest in possible laterd excitatory and inhibitory interactions among
different positions within the same filter (Motoyoshi 1999; Wolfson and Landy 1999).

Early filters are not the only visua processes that play an important role in determining the
conscious perception of textured stimuli. Consder He and Nakayama (1994), who constructed a
series of binocular demongtration stimuli, involving both texture and disparity. The foreground

surface conssted of a set of textured squares. The background stimuli consisted of aregion of |
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shapes surrounded by L shapes that, monocularly, segregated quite easly. However, when seenin
depth with the squares (that abutted the L’sand I's) in front, both the L’s and I’ s were perceived as
occluded by the squares. They underwent surface completion; that is, they were both perceived as
larger rectangles occluded by the squares, and texture segregation became effortful. This suggests
that higher-level, surface-based representations are involved in judgments about the objects

perceived on the basis of textured regionsin the stimulus.

3. Texture Appearance

The previous section concentrated on research concerning obsarvers abilities to detect
borders between differing textures. Here, we condder research more directly measuring the
gppearance of textures. If two images both gppear to be a*“grassy fidd” then, at some leve of
andysis, the representations of the two images must be smilar. To understand the appearance of
texture might involve developing such arepresentation as well as ametric within that representation
space so that textures are perceived as Smilar if their representations are close, and dissmilar if far.
Indeed, there is even evidence that texture appearance (or, at least, region-based) mechanisms can
be responsible for texture segregation in some cases (Wolfson and Landy 1998) as certain texture
pairs can be discriminated just as well when they are separated as when they abut (forming an
edge). Using region-based as well as edge- based mechanisms may be optima for segregation
processes (Lee 1995).

One approach to this problem of measuring texture gppearance isaclassca one: dicit
gmilarity judgments from observers and try to build arepresentation. Having done so, one can then

ask whether the underlying dimensons have any semantic bas's, or whether dimendions satisfy any
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of the properties of other perceptud dimensions (such as the additivity and metamerism of color
gpace). Three dimensions appeared to suffice for sets of natura textures (Rao and Lohse 1996) as
well as artificia ones (Gurnsey and Fleet 2001; Harvey and Gervais 1978). A texture andogy to
color matching experiments with artificiad, one-dimensiona textures provide satisfactory appearance
matches with four texture primaries (Richards and Polit 1974). Aswith color matching, this
technique shows that one can account for texture matches with the four primaries, but does not
explain texture appearance. Color appearance depends on the particular metameric match as well
ason color context. Similarly, texture gppearance can depend on context. For example, Durgin
(2001) showsthat perceived texture dendity of atexture patch depends on the dengty of the
surrounding texture.

An dternative approach is to andyze an instance of texture o asto estimate its representation,
then to use that representation to generate new instances of texture. The proposed representationa
schemeis consdered successful if the newly generated textures are classified as “made of the same
suff asthe origind” by observers. The first such model, by Heeger and Bergen (1995),
represented the input texture image as the histograms of valuesin each level of an oriented pyramid
representation of the image, thet is, as the statistics of the responses from a collection of orientation-
and spatid frequency-tuned spatid filters. The resulting newly-generated texture images were
occasiondly griking in their amilarity to the origind. But, in other instances, especidly those
involving correlations between different image areas at long distances, the results were quite poor.
More recent modd s incorporate higher-order statistics including correlations between pairs of filter
responses across space, spatia frequency and orientation (De Bonet and Viola 1998; Portillaand
Simoncelli 2000; Zhu, Wu and Mumford 1998). Fig. 6 shows two sample textures (inset squares)

that were extrapolated by the technique of Portillaand Smoncelli (2000). Clearly, the technique
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has captured a good ded of that which defines the gppearance of these textures. The techniqueis
somewhat less successful with purely periodic textures (tiles), binary or pen-and-ink textures, or
with pseudo-textures that are, for example, collections of smal objects (e.g., apile of jelybeans). It
remains to be seen whether a metric (Euclidean, Minkowski, or other) applied to one of these
texture representation spaces will correlate well with observers judgments of the perceptud
smilarity of textures.

Few psychophysica tests of these new Satistical characterizations of texture have been carried
out. Kingdom, Hayes and Field (2001), in an analogy to the work of Chubb and colleaguesin the
luminance domain (1994), found that observers were most sengtive to kurtosis in the histograms of
wavedet (that is, multi-scale, orientation-tuned) coefficientsin artificid textures. Durgin (2001) has
suggested that texture dengity is a separate dimengon from either mean (luminance) or variance
(RMS contrast).

The texture representation schemes just discussed areimage-based. That is, dl content of the
representation is based on smple statistics based on responses of filtersto the texture. A complete
theory of texture perception might involve recognition that natural textures are associated with redl-
world materias, and the appearance of texture may well relate to perception of the particular
materid from which the image derived (wood, plastic, water, grasdand, etc.) or properties of the
real-world materid that might relate to actions the observer might wish to take. This isthe concept
of an “affordance’ (Gibson 1979). Isthis materid sticky? Will it crumblein my hand? Will | be
abletowak on it in bare feet? There has been agreat ded of work, notably in the computer
graphics world, to understand image properties of naturd materias to be able to smulate these
materidsin virtud digplays. On the other hand, very little research has been done on the perception

of rea-world texturd properties. Recently, there has been some effort to understand the variety of
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images one can find of natura textures as viewpoint and lighting conditions are varied (Dana, van

Ginneken, Nayar and Koenderink 1999).

4. Shapefrom Texture

Gibson (1950) pointed out that the perspective distortion of surface texture is a cue to surface
layout. For example, consder aground plane that is painted with randomly placed circles. Asthe
surface recedes into the distance, three different “texture gradients’ may be distinguished: size
(further texture elements are smaler in the retind image), dengty (further texture e ements are closer
together in the retinal image) and compresson (further eements are more danted relaive to the line
of dght, and hence form more eccentric elipsesin the retind image).

The computationd literature is replete with suggested dgorithms for the computation of shape
from texture. These dgorithms vary in how regtrictive an assumption is made about the surface
texture. The earliest dgorithms (e.g., Witkin 1981) assumed an isotropic texture (al orientations
were equaly represented on the surface, which is true of the above example). More recent
dgorithms (eg., Aloimonaos 1988) only assume texture homogenety (i.e, the texture is satidticaly
the same a dl positions on the surface). A particularly interesting agorithm is that of Mdik and
Rosenholtz (1997). This agorithm makes wesk assumptions about the underlying surface texture. It
looks for affine digtortions in image statitics from one location to another as seen in the responses
of abank of spatid filters varying in orientation and spatid frequency preference, much like the first
gtage in the current models of texture segregation.

Psychophysical research on the perception of shape from texture has followed asmilar history.

Cutting and Millard (1984) discuss the three possible texture gradients and manipulated them
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independently in their gimuli. They found that perception of dant for planar simuli depended mainly
on the size gradient, whereas perception of curved stimuli was dmost completely determined by the
compression gradient. Rosenholtz and Malik (1997) found texture isotropy to be unnecessary for
human observers to estimate surface orientation, consistent with their computationa theory. Li and
Zadi (2000) examined the types of surface texture that would give averidica percept of shape
when mapped onto a corrugated surface in perspective, and found that severa aspects of the
Fourier power spectrum were predictive of observer accuracy, corresponding to the availability of
oriented energy aong lines of maximum and minimum curvature in the surface.

A second line of psychophysical research has been to derive ided (maximum a posteriori)
observers and to compare the reliability of human observer estimates of surface layout with those of
the idedl observer. Blake, Budthoff and Sheinberg (1993) derived such amodel with the
assumption of isotropic, homogeneous surface texture, and demonstrated that observer estimates of
surface curvature must use the compression gradient. Buckley, Frisby and Blake (1996) applied
the same drategy to the estimation of surface dant, and found that texture compression dominates
observer judgments even for fields of view large enough thet, for the ided, texture density should
dominate. Findly, in aseries of three papers, Knill (1998a-c) derived ided observersfor dant from
texture that use the three texture gradient cues and derived the rdiability of each cue as afunction of
dant and fidd of view. Hefound that human observers became more reliable with increasing dant
and fied of view just as did the idedl observers. Again, performance was 0 good that observers

must have used texture compression and, at least in part, an assumption of isotropy.
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5. Neurophysiology

The physiologica subdrate for the first-stage linear filtersin texture segregation moddsis likely
to be the spatia frequency and orientation selective cdllsin corticd areaV1. Further, V1is
sufficiently complicated that other attributes of the current models, such as the normaization or other
nonlinearities and subsequent spatid pooling, could certainly dso occur in V1. Therearedso laterd
interactions between neuronsin V1 (both excitatory and inhibitory) that have been reported that go
beyond the classicd receptive field. There has been some controversy over the function of these
has laterd interactionsin V1. Some have suggested latera interactions enhance responses to pop-
out stimuli (Kastner, Nothdurft and Pigarev 1997, 1999; Nothdurft, Gallant and Van Essen. 1999),
to texture eements near texture borders (Nothdurft, Gallant and VVan Essen 2000), to orientation
contrast (Knierim and van Essen 1992; Sillito et d. 1995), and to figure rather than ground
(Lamme, 1995; Zipser, Lamme and Schiller 1996). Li (2000) even describes aneura network
modd of segmentation that includes such processes.

However, the responses to orientation contrast stimuli are a complex function of the contrasts
of the figure and ground (Levitt and Lund, 1997) suggesting that these V' 1 responses are primarily
the result of again control mechaniam that isonly an initid stage of the computation of texture
borders and figure-ground. Consgtent with this view, severd groups find that input from outsde the
classica receptive fidd is mainly suppressive and suggest thet it is not involved with figure-ground
andysis (Freeman, Ohzawa and Walker 2001; Ross, Dessmone and Ungerleider 2001; Sceniak,
Hawken and Shapley 2001; Walker, Ohzawa and Freeman 2000). An in-depth review of alarge
range of resultsfrom areas V1 up through MT and V4 (Lennie 1998) concludesthat it may be too

much to attribute such functions as pop-out and figure-ground segregation to area V1, and that
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these functions probably occur in V2 through V4 or even a higher levels. Lennie suggests that
“Spetid interactionsin V1 probably have aless exatic role; they provide laterd inhibition in the
domain of locad sructure so thet, by andogy with laterd inhibition in the luminance domain, Sgnas
from regions of common structure are suppressed and contrasts in structure are made salient.” In
thisview, it isnot until area V4 that the system has even grouped regions of smilar structure to find
contours, regions, surfaces and, perhaps, compute surface dant. And thus, in this view, many of the
processes cdled into play by texture stimuli (e.g. the conscious perception of a surface as having a
particular texture) would be determined predominantly by sill higher-level cortica areas. A recent
fMRI study of gtatic texture segregation (Kastner, de Weerd and Ungerleider 2000) concurs,
finding little response to texture bordersin V1 or V2/VP, and increasing responses as one proceeds

downstream from V3 to V4 and TEO.

6. Conclusions

The perception of textureisarich and varied area of study. Inthe early coding of texture
borders, there is some common ground between current psychophysical data and models and the
physiology of primary visud cortex, such as the suggestion that texture border coding involves a
succession of linear spatid filters and nonlinearities that include both static nonlinearities aswell as
contrast gain control mechanisms. Lesswel understood, however are such higher-leve
computations involving texture as the calculation of figure-ground, the coding of texture appearance,

and the determination of depth and 3-D shape from texture cues.
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FIGURE LEGENDS

1. Typesof image borders. A natura image containing borders sgnaed by differencesin
luminance, color and/or textura content.

2. Texture segregation. Notice that the region of X’s on the left is easly segregated from the
background of L’s. One immediately perceives the borders between the two regions, and the
shape of the region containing the X’s. On the other hand, the border betweenthe T'sand L’sis
difficult to see, and the shape of the region of T's can only be discerned dowly, effortfully, and with
item+by-item scrutiny.

3. The back pocket mode of texture segregation. Theretina imageis first processed by a
bank of linear patid filters. Then, some form of nonlinearity is applied. Here, a pointwise fullwave
rectification isindicated. Next, a second stage of linear spatid filtering is gpplied to enhance the
texture-defined edge. Subsequent decision processes are dependent on the particular
psychophysical task under study.

4. Back pocket moddl. A. An orientation-defined edge. B. The result of the gpplication of a
linear, verticdly-oriented, spatid filter. C. The result of a pointwise nonlinearity (squaring). D. A
second, large-scale, verticaly-oriented, spatid filter yields a peak response at the location of the
texture-defined border in A.

5. The 2nd-order contrast sengitivity function. A. Thisfigure is congructed using a modulator
image to additively combine vertica and horizontal noise images (Landy and Ternes 1995). The

modulator, shown as a function above the texture, has a spatid frequency that increases from left to
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right, and its contrast increases from bottom to top. Large modulator valuesresult in alocd texture
dominated by verticaly-oriented noise, and smal vaues by horizontaly-oriented noise. Note that
threshold modulation contrast is nearly independent of spatia frequency. B. Example datafrom a
forced-choice modulation contrast detection experiment using Sine wave modulators of noise
patterns.

6. Texture appearance, representation and extragpolation. 1n the technique of Portillaand
Simoncdli (2000), atextureisfirst andyzed usng abank of linear spatid filters varying in preferred
gpatid frequency and orientation. A set of Satistics, both 1st-order and correlationd, on that set of
filter responses becomes the representation of the given texture. This representation may be used to
generate new ingances of the texture. In each pand, the inset squareisthe origina texture, and the

rest of theimage is new texture generated using the technique.
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Figure1
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Figure 2
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Modulation Contrast Sensitivity
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