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1. Introduction 

What is visual texture, and how might a study of the visual perception of texture help us to 

better understand human vision?  In this chapter we will attempt to give the reader a feel for how the 

study of texture perception is useful both in understanding the impact of texture itself, as well as in 

providing a better understanding of basic visual mechanisms that respond not only to texture but to 

all visual stimuli.  This review will be relatively brief and, of necessity, incomplete.  We hope to give 

an overview of the different research areas concerned with texture perception and of the current 

issues.  For a longer early review, we refer the reader to Bergen (1991).  

Consider the scene in Fig. 1.  The border between the sky and the trees/grass involves a 

difference in luminance, one that would easily be signaled by a linear mechanism such as a simple 

cell in primary visual cortex.  The boundary between the zebras and the background also involves a 

change in chromaticity (although not visible in the black-and-white image in Fig. 1), which might be 

signaled by color-opponent mechanisms.  But, the borders between pairs of zebras involve neither a 

difference in color nor in average luminance.  These borders include stretches of boundary that are 

black on one side and white on the other, stretches where the colors are reversed, and stretches 

where there is no local visual information to signal the boundary (where black abuts black, or white 

abuts white).  Nevertheless, we perceive a smooth, continuous occlusion boundary at the edge of 

each animal.  It is as if the visual system possesses the capability of segmenting regions of the image 

based on a local textural property, such as separating “vertical stuff” from “horizontal stuff.” 

Thus, texture is a property that is statistically defined.  A uniformly textured region might be 

described as “predominantly vertically oriented”, “predominantly small in scale”, “wavy”, “stubbly”, 

“like wood grain” or “like water.”  As Adelson and Bergen (1991) put it, texture is a property of 
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“stuff” in the image, in contradistinction to visual features such as lines and edges, the “things” in the 

image (analogous to the linguistic difference between mass nouns like “water” and count nouns like 

“mouse”).  

Another way of characterizing visual texture is in the uses to which it might be put.  Texture is a 

property of an image region. Regions in the visual field can be characterized by differences in 

texture, brightness, color or other attributes. Relatively early processes in the visual system can use 

texture information to perform a tentative segmentation of the visual image into regions to ease the 

processing load on subsequent computational stages. The analysis of a single textured image region 

can lead to the perception of categorical labels for that region (“This looks like wood.” or “This 

surface looks slippery.”).  The appearance of texture allows the observer to determine whether two 

textured regions appear to be made of the same or different stuff. If two abutting image regions have 

different surface texture, this may lead to the detection of the intervening texture border (like the 

border between adjacent zebras in Fig. 1).  Such texture-defined boundaries may then be used to 

segment figure from ground and for 2-dimensional shape identification.  Finally, continuous changes 

in texture properties may result in the percept of 3-dimensional shape (Gibson 1950).  A focus of 

much research in this area is to characterize the mechanisms and representational schemes used to 

characterize texture, and thus to determine whether the same underlying mechanisms are responsible 

for each of the above perceptual capabilities. 
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2.  Texture Segregation 

Texture Features 

Much of the work on the perception concerns the ability of observers to effortlessly 

discriminate certain texture pairs.  For example, Fig. 2 shows rectangular regions of X’s and of T’s 

on a background of L’s.  Observers can perceive effortlessly that there is a region of X’s different 

from the background, that this region has smooth, continuous borders, and that these borders form 

a rectangular shape.  This is referred to as the segregation of figure from ground or segmentation of 

the image into multiple, homogenous regions.  At the same time, none of these observations may be 

made about the region of T’s without use of effortful scrutiny of the individual texture elements one 

by one. 

This sort of observation led a number of investigators to consider what aspects of image 

structure led to pre-attentive segregation of textures. Beck and Attneave and their colleagues (Beck 

1972, 1973; Olson and Attneave 1970) hypothesized that textural segmentation occurs on the basis 

of the distribution of simple properties of “texture elements” where the simple properties were things 

like the brightness, color, size, and the slopes of contours and other elemental descriptors of a 

texture.  Marr (1976) added contour terminations as an important feature.   

Julesz’s early efforts were centered around image statistics.  He first suggested (Julesz et al. 

1973) that differences in dipole statistics were most important for texture pairs to segregate (these 

are the joint image statistics of the gray levels found at the opposite ends of a line segment of a 

particular length and orientation, as it is placed at all possible image locations, gathered for all 

possible pairs of gray levels, dipole lengths and orientations).  But, counterexamples to this were 

found (e.g., Caelli and Julesz 1978).  It was then suggested that textures with identical third-order 
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statistics would prove indiscriminable (analogous to dipole statistics, these are joint image statistics 

of the gray levels found at the three corners of a triangle of a particular size, shape and orientation, 

as it is placed at all possible image locations, gathered for all possible triplets of gray levels, triangle 

shapes, sizes and orientations). Again, counterexamples to this hypothesis were found (Julesz, 

Gilbert and Victor 1978). 

Julesz noticed that the counterexamples were suggestive of an alternative explanation for 

texture segregation, similar to those of Beck and Marr.  Julesz found that texture pairs that 

segregated easily but had identical 3rd-order statistics also differed in the amount of an easily 

discernible image feature (e.g., Caelli, Julesz and Gilbert 1978). The task then became one of 

identifying the list of image features, which Julesz (1981) dubbed “textons”, that were sufficient to 

explain segregation performance.  The initial list of textons included such features as size, orientation, 

line terminations and line crossings. 

It has been noted that the 3rd-order statistics used by Julesz were “population statistics.”  That 

is, the counterexamples to Julesz’ various conjectures never had identical 2nd- or 3rd-order 

statistics within the actual, finite images observed.  Rather, the identity was over all possible images 

that could have been generated by the process that generated the particular instantiation of texture 

currently in view.  In fact, for continuous images, image pairs with identical 3rd-order statistics must 

be identical images, rendering that version of the conjecture trivial (Yellott 1993), and finite, discrete 

images are determined by their dipole statistics (Chubb and Yellott 2000).  On the other hand, 

Victor (1994) makes the case for the appropriateness of the use of population statistics for 

theorizing about texture segregation. 

The feature-based theories were echoed in research in the visual search field (Treisman 1985).  

Effortless “parallel” search for a target pattern in a field of distracter patterns was found whenever 
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the target and distracters differed in a feature (e.g., size, orientation, etc.) similar to the texton 

features that led to effortless texture segregation. For example, a target X was effortlessly and 

immediately located in a field of distracter L’s.  However, when the target was a T, the task became 

effortful and required serial scrutiny of the texture elements, requiring more time with every 

additional distracter added to the stimulus (Bergen and Julesz 1983). When the choice of target and 

distracters requires the observer to attend to a specific combination of two features, search 

becomes difficult and observers often perceive “illusory conjunctions” between features of 

neighboring objects (Treisman and Schmidt 1982).  Somewhat analogous effects using texture 

elements having combinations of two features have been noted in texture segregation as well 

(Papathomas et al. 1999). However, Wolfe (1992) suggests that texture segregation and parallel 

visual search do not always follow the same rules. 

A number of other observations have been made concerning when texture element stimuli do or 

do not segregate.  Beck (1982) has pointed out that textures segregate based not only on the 

particular texture elements used, but also on their arrangement, reminiscent of the Gestalt laws of 

figural goodness.  As in the search literature (Treisman and Gormican 1988), texture segregation 

may show asymmetries (Beck 1973; Gurnsey and Browse 1989).  For example, a patch of 

incomplete circles will easily segregate from a background of circles, whereas the reverse pattern 

results in poor segregation.  It has been suggested this is due to a difference in the variability of 

responses of underlying visual mechanisms to the two possible texture elements (Rubenstein and 

Sagi 1990). 

Nothdurft (1985) suggested that finding an edge between two textures is analogous to finding a 

luminance-defined edge.  To determine a luminance boundary involves locating large values of the 

derivative of luminance (the luminance gradient) across an image.  Finding texture boundaries might 
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involve the determination of other aspects of image structure (local scale, local orientation, etc.), and 

segregation would then result from large values of the “structure gradient.” 

Finally, much of the literature assumes that effortless texture segregation and parallel visual 

search are truly effortless.  That is, they require no selective attention to operate (demonstrated by, 

e.g., Braun and Sagi 1990). However, Joseph, Chun and Nakayama (1997) had observers perform 

an effortful, secondary task and noticed a large decrement in search performance in a search task 

that typically yields performance independent of the number of distracters.  Thus, it is possible that 

even parallel search and, by extension, effortless texture segregation still require selective visual 

attention.  Alternatively, texture segregation may not require focal visual attention, but attention may 

be used to alter the characteristics of visual mechanisms responsible for texture segregation (e.g., 

Yeshurun and Carrasco,  2000).  Early literature also assumed that texture segregation was 

effortless in the sense of being “immediate”.  However at least some textures take substantial time to 

process (e.g. Sutter and Graham 1995) thus undermining the notion that preattentive texture 

segregation is always immediate and effortless. 

We have treated texture as if it is somehow an isolated cue that can signal the presence, 

location and shape of an edge.  However, texture can co-occur in a stimulus with other cues to edge 

presence such as luminance, color, depth or motion.  Rivest and Cavanagh (1996) showed that 

perceived edge location was a compromise between the position signaled by texture and by other 

cues (motion, luminance, color).  In addition, localization accuracy was better for 2-cue than for 

single-cue stimuli.  Landy and Kojima (2001) found that different textural cues to edge location 

were combined using a weighted average, with greater weight given to the more reliable cues. This 

is analogous to the cue combination scheme that has been seen with multiple cues to depth 

(including depth-from-texture) by Landy, Maloney, Johnston and Young (1995), among others. 
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Current Models of Texture Segregation 

How might one model the aspects of texture segregation performance we have just surveyed?  

If an edge is defined by a difference in luminance (a typical light/dark edge), then a band pass linear 

spatial filter similar to a cortical simple cell can detect the edge by producing a peak response at the 

location of the edge.  But, a typical texture-defined edge (e.g., Figs. 2 and 4A) has the same 

average luminance on either side of the edge and thus will not be detected by any purely linear 

mechanism. 

Several early investigators (e.g. Beck 1972;  Julesz 1981) suggested that observers calculate 

the local density of various image features, and that differences in these texton or feature statistics on 

either side of a texture-defined edge results in effortless texture segregation.  However, it was never 

clearly described exactly what an image feature was and how it would be computed from the retinal 

image.  The image features discussed (e.g. lines of different slopes, line terminations and crossings) 

were clearly tied to the kinds of stimuli employed in most texture studies of the period (basically, 

pen-and-ink drawings), and would not be applied easily to natural, gray-scale images. 

An alternative line of modeling suggests that we need look no further than the orientation- and 

spatial frequency-tuned channels already discovered in the spatial vision literature through 

summation, identification, adaptation and masking experiments using sine wave grating stimuli (De 

Valois and De Valois 1988; Graham 1989, 1992). For example, Knutsson and Granlund (1983) 

suggested that the distribution of power in different spatial frequency bands might be used to 

segregate natural textures and ran such a computational model on patchworks of textures drawn 

from the Brodatz (1966) collection (a standard collection of texture images often used in the 

computational literature). 
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Bergen and Adelson (1988) pointed out that even the example of X’s, L’s and T’s (Fig. 2) 

could be accounted for by the distribution of power in isotropic channels similar in form to cells 

found in the LGN and layer 4 of primary visual cortex.  Further, they showed that if the size of the 

X’s was increased to effectively equate the dominant spatial frequency or “scale” of the different 

texture elements, the segregation of X’s from a background of L’s could be made difficult.  This 

was strong evidence against the texton or feature theories. 

A plethora of similar models based on filters selective for spatial frequency and orientation have 

been investigated (Bovik, Clark and Geisler 1990; Caelli 1985; Fogel and Sagi 1989; Graham 

1991; Landy and Bergen 1991; Malik and Perona 1990; Sutter, Beck and Graham 1989; Turner 

1986; for an alternative view, see Victor 1988).  These models are so similar in basic design that 

Chubb and Landy (1991) referred to this class as the “back pocket model of texture segregation,” 

as texture perception researchers pull this model from their back pocket to explain new phenomena 

texture segregation. 

The basic back pocket model consists of three stages (Fig. 3). First, a set of linear spatial 

filters, akin to the simple cells of primary visual cortex, is applied to the retinal image.  Second, the 

outputs of the first-stage linear filters are transformed in a nonlinear manner (by half- or full-wave 

rectification, squaring and/or gain control).  Finally, another stage of linear filtering is used to 

enhance texture-defined contours.  If this third stage consisted only of spatial pooling, the resulting 

outputs would resemble those of cortical simple cells.  But, often this linear filter is modeled as 

bandpass and orientation-tuned, so that it enhances texture-defined edges much as an orientation-

tuned linear spatial filter enhances luminance-defined edges. 

This process is illustrated in Fig. 4.  Fig. 4A shows an orientation-defined texture border 

(Wolfson and Landy 1995).  In Fig. 4B a vertically-oriented spatial filter has been applied.  The 
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responses are larger to the vertically-oriented portion of the image, but these responses are both 

strongly positive (when the filter is centered on a texture element) and negative (when the filter is 

positioned off to the side of a texture element).  As a result, the average value of the output is 

identical on either side of the texture border, but on the left the response variability is greater.  In 

Fig. 4C the responses of Fig. 4B have been rectified, resulting in larger responses in the area of 

vertically-oriented texture.  Finally, in Fig. 4D  a 2nd-order, larger scale, vertically-oriented spatial 

filter has been applied, resulting in a peak response at the location of the texture-defined edge.  For 

a detection experiment (“Was there a texture-defined edge in this briefly-flashed stimulus” or “Were 

there two different texture regions or only one?”), a model would try to predict human performance 

by the strength of the peak response in Fig. 4D as compared to peaks in responses to background 

noise in stimuli not containing texture-defined edges.  For further examples, see Bergen (1991) and 

Bergen and Landy (1991). 

A wide variety of terminology has been used to describe the basic model outlined in Fig. 3, 

making the literature difficult to approach for the neophyte.  The basic sequence of a spatial filter, a 

nonlinearity and a second spatial filter has been called the back pocket model (Chubb and Landy 

1991), a LNL (linear, nonlinear, linear) model, a FRF (filter, rectify, filter) model (e.g. Dakin, 

Williams and Hess 1999), second-order processing (e.g. Chubb, Olzak and Derrington 2001) or a 

simple or linear channel (the first L in LNL) followed by a comparison-and-decision stage (e.g. 

Graham, Beck, and Sutter 1992), 

About the term “2nd-order”.  The phrase “2nd-order” can be particularly troublesome.  In 

some hands, and as we will use it here,  it merely refers to the 2nd-stage of linear filtering following 

the nonlinearity in a model like that of Fig. 3. As such, it has been applied to models in a wide 

variety of visual tasks (Chubb et al. 2001). But, “2nd-order” has another technical definition that has 
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also been used in similar contexts.  If the nonlinearity in Fig. 3 is a squaring operation, then the pixels 

in the output image (after the second stage of linear filtering) are all computed as 2nd-order (i.e., 

quadratic) polynomials of the pixels in the model input.  

In this chapter, we will refer to the model of Fig. 3 as a 2nd-order model, meaning that it 

contains a 2nd-order linear spatial filter.  Of necessity, this 2nd-order linear filter must follow an 

intervening nonlinearity.  Otherwise, there would simply be two sequential linear filters which is 

indistinguishable from a single, lumped linear spatial filter.  We will use this term regardless of the 

polynomial order of the intervening nonlinearity. 

There is also a more general use of “2nd-order”. In this usage a 2nd-order entity (e.g., a 

neuron) pools, after some intervening nonlinearity, the responses from a number of other entities 

(called 1st-order) but, in this more general usage, the 1st -order entities do not form a linear filter 

characterized by a single spatial weighting function as they do in Fig. 3.  Rather, the 1st-order 

entities can be an assortment of neurons sensitive to various different things (e.g. different 

orientations or different spatial frequencies). See the introduction to Graham and Sutter (1998) for a 

brief review of such general suggestions.   

3rd-order models.  2nd-order models are not the end of the story.  For example,  Graham, 

Sutter, and Venkatesan (1993) used an element-arrangement texture stimulus consisting of two 

types of elements, arranged in stripes in one region and in a checkerboard in another region. 

Consider the case where each texture element is a high frequency Gabor pattern (a windowed sine 

wave grating) and the two types of elements differ only in spatial frequency.  Consider a 2nd-order 

model like that just described with the first linear filter tuned to one of the two types of Gabor 

patches, and the second linear filter tuned to the width and orientation of stripes of elements. This 

2nd-order model would yield a response to these element-arrangement textures that was of the 
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same average level although of high contrast in the striped region and low contrast in the checked 

region.  To reveal the texture-defined edge between the  checkerboard and striped regions, 

therefore,  requires another stage of processing, which could be a pointwise nonlinearity followed by 

an even larger-scale linear spatial filter (another NL) thus producing a sequence LNLNL. For an 

illustration of such a model’s responses see Graham, Sutter and Venkatesan (1993), Fig. 4.  

Here we will call this LNLNL sequence a 3rd-order model.  But, to avoid confusion, let us 

note that Graham and her colleagues refer to the first LNL  as a “complex channel” or “2nd-order 

channel” and the final NL is an instance of what they call the comparison-and-decision stage.  

About the terms “Fourier” and “non-Fourier”.  There is also possible confusion about the 

terms Fourier and non-Fourier. A stimulus like that in Fig. 4A  in which the edge can be found by 

the model in Fig. 3 has been referred to as “non-Fourier” (first applied to motion stimuli by Chubb 

and Sperling 1988). The term was used because the Fourier spectrum of this stimulus does not 

contain components that correspond directly to the texture-defined edge. But some others (e.g., 

Graham and Sutter 2000) have used the term “Fourier” channels for the first linear filters (the simple 

channels) in Fig. 3 and reserved the term “non-Fourier” for the complex channels (the initial LNL) in 

what we called third-order models above (LNLNL).  

This confusing terminology is the result of a difference in emphasis.  In this chapter we 

concentrate on models that localize (i.e., produce a peak response at)  edges between two abutting 

textures..  But, others (e.g. Graham and Sutter 2000; Lin and Wilson 1996) have emphasized 

response measures that can be used to discriminate between pairs of textures (whether 

simultaneously present and abutting or not)  by any later, nonlinear decision process.  Thus, finding 

the edge in an orientation-defined texture like that of Fig. 3 is, in Graham and Sutter’s  terms, 

“Fourier-based” as the power spectra of the two constituent textures differ, whereas finding the 
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edge in a Gabor-patch element-arrangement texture like that of Graham, Sutter, and Venkatesan 

(1993) is “non-Fourier-based” as the power spectra of the two constituent textures do not differ.  

Model Specification 

The models of texture segregation just described are complicated, with many details that 

require elucidation.  Are the initial linear filters of a 2nd-order pathway the same spatial filters as the 

spatial frequency channels that have been described using grating experiments? What is the nature of 

the following nonlinearity?  Are there fixed, 2nd-order linear filters and what is their form? This is an 

area of current, active research and most of these issues have not been convincingly decided. 

Graham, Sutter and Venkatesan (1993) and Dakin and Mareschal (2000) provide evidence 

that the initial spatial filters in a 2nd-order pathway used to detect contrast modulations of texture 

are themselves tuned for spatial frequency and orientation.  In the same article, Graham and 

colleagues also demonstrated that the initial spatial filters in a 3rd-order pathway (their “complex 

channels”) were orientation and spatial-frequency-tuned as well. 

The back pocket model includes a nonlinearity between the two stages of linear spatial filtering 

that is required to demodulate the input stimuli. For small 1st-order spatial filters, Chubb, 

Econopouly and Landy (1994) provided a technique called histogram contrast analysis that allowed 

them to measure aspects of the static nonlinearity, showing that it included components of higher 

order than merely squaring the input luminances.  Graham and Sutter (1998) found that this 

nonlinearity must be expansive.  They also (Graham and Sutter 2000) suggest that a gain control 

mechanism acts as an inhibitory influence among multiple pathways both of the type called 2nd-

order and 3rd-order here. 

First-order spatial frequency channels were first measured using sine wave grating stimuli and 

various experimental paradigms including adaptation, masking and summation experiments 
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(reviewed in Graham 1989). Recently, researchers have used analogous experiments to examine the 

2nd-order linear filters.  To do so, researchers hope to deliver to the 2nd-order filter something like 

the sine wave grating stimuli of classic spatial frequency channel studies. The usual ploy is to use a 

stimulus that has a sine wave (or Gabor) pattern that is used to modulate some aspect of textural 

content across the stimulus. The assumed 1st-order filter and subsequent nonlinearity demodulate 

this stimulus, providing as input to the 2nd-order linear filter a noisy version of the intended grating 

or Gabor pattern. 

Studies of texture modulation detection have revealed a very broad-band 2nd-order texture 

contrast sensitivity function (CSF) using a variety of texture modulations including contrast 

(Schofield and Georgeson 1999, 2000; Sutter, Sperling and Chubb 1995), local orientation content 

(Kingdom, Keeble and Moulden 1995) and modulation between vertically- and horizontally-

oriented filtered noise (Landy and Ternes 1995).  This function is far more broad-band than the 

corresponding luminance CSF.  A demonstration of this effect is shown in Fig. 5A.  A modulator 

pattern is used to additively combine a vertical and horizontal noise texture.  The modulator 

increases in spatial frequency from left to right, and in contrast from bottom to top.  As you can see, 

the texture modulation becomes impossible to discern at approximately the same level for all spatial 

frequencies.  The sample data in Fig. 5B confirm this observation. 

Evidence for multiple, 2nd-order filters underlying this broad 2nd-order CSF has been 

equivocal, with evidence both pro (Arsenault, Wilkinson and Kingdom 1999; Schofield and 

Georgeson 1999) and con (Kingdom and Keeble 1996).  Many studies have found texture 

discrimination to be scale-invariant, suggesting the existence of a link between the scale of the 

corresponding 1st- and 2nd-order spatial filters (Kingdom and Keeble 1999, Landy and Bergen 

1991, Sutter et al.  1995). It has also been suggested that the orientation preferences of the 1st- and 
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2nd-order filters tend to be aligned (Dakin and Mareschal 2000; Wolfson and Landy 1995).  This 

alignment of 1st- and 2nd-order filters has also been supported for element-arrangement stimuli that 

require a 3rd-order model to detect the texture-defined edges (Graham and Wolfson 2001). 

If there is an obligatory link between the scales of the 1st- and 2nd-order filters, this suggests 

that the preferred 2nd-order scale should depend on eccentricity.  This was first demonstrated by 

Kehrer (1989) who noted that performance on an orientation-defined texture-segregation task at 

first improves as the target texture moves into the periphery, and then falls as the eccentricity further 

increases.  The poor foveal performance was dubbed the central performance drop (CPD). This 

argument that the CPD is due to the relation between the scale of the 2nd-order pattern and the 

local scale of the 2nd-order filter has been made by Yeshurun and Carrasco (2000) who, in 

addition, suggested that the 2nd-order spatial filters are narrowed as a consequence of the 

allocation of selective attention.  

The temporal properties of the 1st- and 2nd-order filters are not well understood although 

some information is available (Lin and Wilson 1996; Motoyoshi and Nishida 2001; Schofield and 

Georgeson 2000;  Sutter and Graham 1995, Sutter and Hwang 1999). 

The possibility that the wiring  between 1st-order and 2nd order filters is more complicated 

than that shown in Fig. 3 remains open as well (e.g. appendix in Graham and Sutter 1998; Mussap 

2001) with some particular interest in possible lateral excitatory and inhibitory interactions among 

different positions within the same filter (Motoyoshi 1999; Wolfson and Landy 1999).  

Early filters are not the only visual processes that play an important role in determining the 

conscious perception of textured stimuli.  Consider He and Nakayama (1994), who constructed a 

series of binocular demonstration stimuli, involving both texture and disparity.  The foreground 

surface consisted of a set of textured squares. The background stimuli consisted of a region of I 
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shapes surrounded by L shapes that, monocularly, segregated quite easily.  However, when seen in 

depth with the squares (that abutted the L’s and I’s) in front, both the L’s and I’s were perceived as 

occluded by the squares.  They underwent surface completion; that is, they were both perceived as 

larger rectangles occluded by the squares, and texture segregation became effortful.  This suggests 

that higher-level, surface-based representations are involved in judgments about the objects 

perceived on the basis of textured regions in the stimulus. 

3.  Texture Appearance 

The previous section concentrated on research concerning observers’ abilities to detect 

borders between differing textures.  Here, we consider research  more directly measuring the 

appearance of textures.  If two images both appear to be a “grassy field” then, at some level of 

analysis, the representations of the two images must be similar.  To understand the appearance of 

texture might involve developing such a representation as well as a metric within that representation 

space so that textures are perceived as similar if their representations are close, and dissimilar if far.  

Indeed, there is even evidence that texture appearance (or, at least,  region-based) mechanisms can 

be responsible for texture segregation in some cases (Wolfson and Landy 1998) as certain texture 

pairs can be discriminated just as well when they are separated as when they abut (forming an 

edge). Using region-based as well as edge-based mechanisms may be optimal for segregation 

processes (Lee 1995).  

One approach to this problem of measuring texture appearance is a classical one:  elicit 

similarity judgments from observers and try to build a representation.  Having done so, one can then 

ask whether the underlying dimensions have any semantic basis, or whether dimensions satisfy any 
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of the properties of other perceptual dimensions (such as the additivity and metamerism of color 

space).  Three dimensions appeared to suffice for sets of natural textures (Rao and Lohse 1996) as 

well as artificial ones (Gurnsey and Fleet 2001; Harvey and Gervais 1978).  A texture analogy to 

color matching experiments with artificial, one-dimensional textures provide satisfactory appearance 

matches with four texture primaries (Richards and Polit 1974).  As with color matching, this 

technique shows that one can account for texture matches with the four primaries, but does not 

explain texture appearance.  Color appearance depends on the particular metameric match as well 

as on color context.  Similarly, texture appearance can depend on context.  For example, Durgin 

(2001) shows that perceived texture density of a texture patch depends on the density of the 

surrounding texture. 

An alternative approach is to analyze an instance of texture so as to estimate its representation, 

then to use that representation to generate new instances of texture.  The proposed representational 

scheme is considered successful if the newly generated textures are classified as “made of the same 

stuff as the original” by observers.  The first such model, by Heeger and Bergen (1995), 

represented the input texture image as the histograms of values in each level of an oriented pyramid 

representation of the image, that is, as the statistics of the responses from a collection of orientation- 

and spatial frequency-tuned spatial filters.  The resulting newly-generated texture images were 

occasionally striking in their similarity to the original. But, in other instances, especially those 

involving correlations between different image areas at long distances, the results were quite poor.  

More recent models incorporate higher-order statistics including correlations between pairs of filter 

responses across space, spatial frequency and orientation (De Bonet and Viola 1998; Portilla and 

Simoncelli 2000; Zhu, Wu and Mumford 1998).  Fig. 6 shows two sample textures (inset squares) 

that were extrapolated by the technique of Portilla and Simoncelli (2000).  Clearly, the technique 
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has captured a good deal of that which defines the appearance of these textures. The technique is 

somewhat less successful with purely periodic textures (tiles), binary or pen-and-ink textures, or 

with pseudo-textures that are, for example, collections of small objects (e.g., a pile of jellybeans).  It 

remains to be seen whether a metric (Euclidean, Minkowski, or other) applied to one of these 

texture representation spaces will correlate well with observers’ judgments of the perceptual 

similarity of textures. 

Few psychophysical tests of these new statistical characterizations of texture have been carried 

out.  Kingdom, Hayes and Field (2001), in an analogy to the work of Chubb and colleagues in the 

luminance domain (1994), found that observers were most sensitive to kurtosis in the histograms of 

wavelet (that is, multi-scale, orientation-tuned) coefficients in artificial textures.  Durgin (2001) has 

suggested that texture density is a separate dimension from either mean (luminance) or variance 

(RMS contrast). 

The texture representation schemes just discussed are image-based.  That is, all content of the 

representation is based on simple statistics based on responses of filters to the texture.  A complete 

theory of texture perception might involve recognition that natural textures are associated with real-

world materials, and the appearance of texture may well relate to perception of the particular 

material from which the image derived (wood, plastic, water, grassland, etc.) or properties of the 

real-world material that might relate to actions the observer might wish to take.  This is the concept 

of an “affordance” (Gibson 1979).  Is this material sticky?  Will it crumble in my hand?  Will I be 

able to walk on it in bare feet?  There has been a great deal of work, notably in the computer 

graphics world, to understand image properties of natural materials to be able to simulate these 

materials in virtual displays.  On the other hand, very little research has been done on the perception 

of real-world textural properties.  Recently, there has been some effort to understand the variety of 
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images one can find of natural textures as viewpoint and lighting conditions are varied (Dana, van 

Ginneken, Nayar and Koenderink 1999). 

4.  Shape from Texture 

Gibson (1950) pointed out that the perspective distortion of surface texture is a cue to surface 

layout.  For example, consider a ground plane that is painted with randomly placed circles.  As the 

surface recedes into the distance, three different “texture gradients” may be distinguished:  size 

(further texture elements are smaller in the retinal image), density (further texture elements are closer 

together in the retinal image) and compression (further elements are more slanted relative to the line 

of sight, and hence form more eccentric ellipses in the retinal image). 

The computational literature is replete with suggested algorithms for the computation of shape 

from texture.  These algorithms vary in how restrictive an assumption is made about the surface 

texture.  The earliest algorithms (e.g., Witkin 1981) assumed an isotropic texture (all orientations 

were equally represented on the surface, which is true of the above example).  More recent 

algorithms (e.g., Aloimonos 1988) only assume texture homogeneity (i.e., the texture is statistically 

the same at all positions on the surface). A particularly interesting algorithm is that of Malik and 

Rosenholtz (1997). This algorithm makes weak assumptions about the underlying surface texture. It 

looks for affine distortions in image statistics from one location to another as seen in the responses 

of a bank of spatial filters varying in orientation and spatial frequency preference, much like the first 

stage in the current models of texture segregation. 

Psychophysical research on the perception of shape from texture has followed a similar history.  

Cutting and Millard (1984) discuss the three possible texture gradients and manipulated them 
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independently in their stimuli.  They found that perception of slant for planar stimuli depended mainly 

on the size gradient, whereas perception of curved stimuli was almost completely determined by the 

compression gradient.  Rosenholtz and Malik (1997) found texture isotropy to be unnecessary for 

human observers to estimate surface orientation, consistent with their computational theory. Li and 

Zaidi (2000) examined the types of surface texture that would give a veridical percept of shape 

when mapped onto a corrugated surface in perspective, and found that several aspects of the 

Fourier power spectrum were predictive of observer accuracy, corresponding to the availability of 

oriented energy along lines of maximum and minimum curvature in the surface. 

A second line of psychophysical research has been to derive ideal (maximum a posteriori) 

observers and to compare the reliability of human observer estimates of surface layout with those of 

the ideal observer.  Blake, Buelthoff and Sheinberg (1993) derived such a model with the 

assumption of isotropic, homogeneous surface texture, and demonstrated that observer estimates of 

surface curvature must use the compression gradient.  Buckley, Frisby and Blake (1996) applied 

the same strategy to the estimation of surface slant, and found that texture compression dominates 

observer judgments even for fields of view large enough that, for the ideal, texture density should 

dominate.  Finally, in a series of three papers, Knill (1998a-c) derived ideal observers for slant from 

texture that use the three texture gradient cues and derived the reliability of each cue as a function of 

slant and field of view.  He found that human observers became more reliable with increasing slant 

and field of view just as did the ideal observers.  Again, performance was so good that observers 

must have used texture compression and, at least in part, an assumption of isotropy. 
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5.  Neurophysiology 

The physiological substrate for the first-stage linear filters in texture segregation models is likely 

to be the spatial frequency and orientation selective cells in cortical area V1.  Further, V1 is 

sufficiently complicated that other attributes of the current models, such as the normalization or other 

nonlinearities and subsequent spatial pooling, could certainly also occur in V1.  There are also lateral 

interactions between neurons in V1 (both excitatory and inhibitory) that have been reported that go 

beyond the classical receptive field.  There has been some controversy over the function of these 

has lateral interactions in V1.  Some have suggested lateral interactions enhance responses to pop-

out stimuli (Kastner, Nothdurft and Pigarev 1997, 1999; Nothdurft, Gallant and Van Essen. 1999), 

to texture elements near texture borders (Nothdurft, Gallant and Van Essen 2000), to orientation 

contrast (Knierim and van Essen 1992; Sillito et al. 1995), and to figure rather than ground 

(Lamme, 1995; Zipser, Lamme and Schiller 1996).  Li (2000) even describes a neural network 

model of segmentation that includes such processes. 

However, the responses to orientation contrast stimuli are a complex function of the contrasts 

of the figure and ground (Levitt and Lund, 1997) suggesting that these V1 responses are primarily 

the result of a gain control mechanism that is only an initial stage of the computation of texture 

borders and figure-ground.  Consistent with this view, several groups find that input from outside the 

classical receptive field is mainly suppressive and suggest that it is not involved with figure-ground 

analysis (Freeman, Ohzawa and Walker 2001; Rossi, Desimone and Ungerleider 2001; Sceniak, 

Hawken and Shapley 2001; Walker, Ohzawa and Freeman 2000).  An in-depth review of a large 

range of results from areas V1 up through MT and V4 (Lennie 1998) concludes that it may be too 

much to attribute such functions as pop-out and figure-ground segregation to area V1, and that 
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these functions probably occur in V2 through V4 or even at higher levels.  Lennie suggests that 

“Spatial interactions in V1 probably have a less exotic role; they provide lateral inhibition in the 

domain of local structure so that, by analogy with lateral inhibition in the luminance domain, signals 

from regions of common structure are suppressed and contrasts in structure are made salient.”  In 

this view, it is not until area V4 that the system has even grouped regions of similar structure to find 

contours, regions, surfaces and, perhaps, compute surface slant.  And thus, in this view, many of the 

processes called into play by texture stimuli (e.g. the conscious perception of a surface as having a 

particular texture) would be determined predominantly by still higher-level cortical areas.  A recent 

fMRI study of static texture segregation (Kastner, de Weerd and Ungerleider 2000) concurs, 

finding little response to texture borders in V1 or V2/VP, and increasing responses as one proceeds 

downstream from V3 to V4 and TEO. 

6.  Conclusions 

The perception of texture is a rich and varied area of study.  In the early coding of texture 

borders, there is some common ground between current psychophysical data and models and the 

physiology of primary visual cortex, such as the suggestion that texture border coding involves a 

succession of linear spatial filters and nonlinearities that include both static nonlinearities as well as 

contrast gain control mechanisms.  Less well understood, however are such higher-level 

computations involving texture as the calculation of figure-ground, the coding of texture appearance, 

and the determination of depth and 3-D shape from texture cues. 
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FIGURE LEGENDS 

1.  Types of image borders.  A natural image containing borders signaled by differences in 

luminance, color and/or textural content. 

2.  Texture segregation.  Notice that the region of X’s on the left is easily segregated from the 

background of L’s.  One immediately perceives the borders between the two regions, and the 

shape of the region containing the X’s.  On the other hand, the border between the T’s and L’s is 

difficult to see, and the shape of the region of T’s can only be discerned slowly, effortfully, and with 

item-by-item scrutiny. 

3.  The back pocket model of texture segregation.  The retinal image is first processed by a 

bank of linear spatial filters.  Then, some form of nonlinearity is applied.  Here, a pointwise fullwave 

rectification is indicated.  Next, a second stage of linear spatial filtering is applied to enhance the 

texture-defined edge.  Subsequent decision processes are dependent on the particular 

psychophysical task under study. 

4.  Back pocket model.  A.  An orientation-defined edge.  B.  The result of the application of a 

linear, vertically-oriented, spatial filter.  C.  The result of a pointwise nonlinearity (squaring).  D.  A 

second, large-scale, vertically-oriented, spatial filter yields a peak response at the location of the 

texture-defined border in A. 

5.  The 2nd-order contrast sensitivity function.  A.  This figure is constructed using a modulator 

image to additively combine vertical and horizontal noise images (Landy and Ternes 1995).  The 

modulator, shown as a function above the texture, has a spatial frequency that increases from left to 
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right, and its contrast increases from bottom to top.  Large modulator values result in a local texture 

dominated by vertically-oriented noise, and small values by horizontally-oriented noise.  Note that 

threshold modulation contrast is nearly independent of spatial frequency.   B.  Example data from a 

forced-choice modulation contrast detection experiment using sine wave modulators of noise 

patterns. 

6.  Texture appearance, representation and extrapolation.  In the technique of Portilla and 

Simoncelli (2000), a texture is first analyzed using a bank of linear spatial filters varying in preferred 

spatial frequency and orientation.  A set of statistics, both 1st-order and correlational, on that set of 

filter responses becomes the representation of the given texture.  This representation may be used to 

generate new instances of the texture.  In each panel, the inset square is the original texture, and the 

rest of the image is new texture generated using the technique. 
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