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Abstract

Most reinforcement learning models of animal conditioning operate under the convenient, though fictive, assumption that Pavlovian
conditioning concerns prediction learning whereas instrumental conditioning concerns action learning. However, it is only through Pavlovian
responses that Pavlovian prediction learning is evident, and these responses can act against the instrumental interests of the subjects. This can be
seen in both experimental and natural circumstances. In this paper we study the consequences of importing this competition into a reinforcement
learning context, and demonstrate the resulting effects in an omission schedule and a maze navigation task. The misbehavior created by Pavlovian
values can be quite debilitating; we discuss how it may be disciplined.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Theories of animal learning rest on a fundamental distinction
between two classes of procedure: Pavlovian and instrumental
conditioning (see Mackintosh (1983)). Crudely, the difference
concerns contingency. In a Pavlovian (or classical) procedure,
an animal learns that a stimulus (such as the ringing of a bell)
predicts a biologically significant outcome (such as the delivery
of a piece of meat) which is made to happen regardless of the
animal’s actions. The characteristic behavioral responses (e.g.
salivation) that result are taken to reflect directly the animal’s
learned expectations. In instrumental (operant) conditioning,
however, the delivery of the outcome is made to be contingent
on appropriate actions (e.g. leverpresses) being taken by
the animal. Ambiguity between Pavlovian and instrumental
influences arises in that many behaviors, such as locomotion,
can evidently occur under either Pavlovian or instrumental
control. In fact, virtually all conditioning situations involve both
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sorts of circumstance; and the two varieties of learning are
thought to interact with one another in a number of ways.

Here we investigate one such interaction — direct
competition for behavioral output. This sort of competition
has hitherto eluded the reinforcement learning (RL Sutton
and Barto (1998)) theories that nevertheless have wide
application in modeling substantial issues in both classical
and instrumental conditioning (e.g. Dayan and Balleine (2002),
Doya (1999), Hikosaka et al. (1999), Houk, Adams, and Barto
(1995), Montague, Dayan, and Sejnowski (1996), O’Doherty
(2004), Schultz (1998), Suri and Schultz (1998) and Voorn,
Vanderschuren, Groenewegen, Robbins, and Pennartz (2004).

One high point in the debate about the relative importance
of instrumental and classical effects in controlling behavior
was the development of a Pavlovian procedure called
autoshaping (Brown & Jenkins, 1968). This originally involved
the observation that when the delivery of food reward is
accompanied by the timely illumination of a pecking key,
pigeons come to approach and peck the key. Critically, this
pecking occurs even though (as a Pavlovian procedure) the food
is delivered regardless of whether or not the key is pecked. In
fact, this procedure leads more swiftly to reliable key pecking
than the instrumental equivalent of only rewarding the birds
with food on trials on which they peck. Classical conditioning
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ideas such as autoshaping actually underlie many schemes for
shaping particular, apparently instrumental, animal behaviors.

By contrast, a procedure called negative automaintenance
(Williams & Williams, 1969) uses an omission schedule
(Sheffield, 1965) to pit classical and instrumental conditioning
against each other. In the version of this adapted from
autoshaping, the pigeons are denied food on any trial in
which they peck the lit key. In this case, the birds still peck
the key (albeit to a reduced degree), thereby getting less
food than they might. This persistence in pecking despite the
instrumental contingency between withholding pecking and
food shows that Pavlovian responding is formally independent
from instrumental responding, since the Pavlovian peck is never
reinforced. However, it is disturbing for standard instrumental
conditioning notions, which typically do not place restrictions
on the range of behaviors that can be controlled by reward
contingencies. Further, as Dayan and Balleine (2002) pointed
out, but did not fix, it has particular force against the formal
instantiation of instrumental conditioning in terms of RL. RL
accounts neither for the fact that a particular action (pecking)
accompanies the mere prediction of food, nor for the fact that
this action choice can be better (or perhaps worse) than the
instrumentally appropriate choice (in this case, of not pecking).

Such an anomaly is merely the tip of a rococo iceberg. In a
famous paper entitled The misbehavior of organisms, Breland
and Breland (1961) described a variety of more exotic failures
of conditioning procedures (see also Breland and Breland
(1966)). For instance, animals that initially learn to deposit an
object in a chute to obtain food, subsequently become hampered
because of their inability to part with the food-predicting object.
Equally, Hershberger (1986) showed that, in a ‘looking glass’
environment, chicks could not learn to run away from a source
of food in order to get access to it. Many of these failures
have the flavor of omission schedules, with an ecologically
plausible action (the equivalent of approaching and pecking
the lit key) interfering with the choices that would otherwise
lead to desirable outcomes. Various of the behavioral anomalies
arise progressively, with the instrumentally appropriate actions
slowly being overwhelmed by Pavlovian ones.

Humans also exhibit behaviors that seem to violate their
apparent goals. This has most frequently been studied in
terms of a long-term plan (e.g. dieting) being bulldozed by
a short-term opportunity (e.g. a cream bun). Indeed, this
sort of intertemporal choice conflict lies at the heart of two
popular theories. One theory suggests the conflict arises from
hyperbolic discounting of the future (see Ainslie (1992, 2001),
Laibson (1997), Loewenstein and Prelec (1992) and Myerson
and Green (1995), which makes short term factors overwhelm a
long term view. Another theory is that the behavioral anomalies
arise from competition between deliberative and affective
choice systems (Loewenstein & O’Donoghue, 2004; McClure,
Laibson, Loewenstein, & Cohen, 2004), with the latter ignoring
long-term goals in favor of immediate ones. However, data
on interactions between deliberative and affective instrumental
systems in animals are well explained (see Daw, Niv, and
Dayan (2005)) by assuming the controllers actually share
the same goals and differ only in terms of the information
they bring to bear on achieving those goals. Therefore, here
we propose that, instead of intertemporal conflicts being
key, the anomalies may arise from interactions between
Pavlovian control and instrumental control of either stripe.
The appearance of intertemporal competition follows from the
character of the Pavlovian responses, which seem myopic due
to being physically directed toward accessible reinforcers and
their predictors.

In this paper, we propose a formal RL account of the interac-
tion between the apparently misbehaving Pavlovian responses
(arising from classically conditioned value predictions) and in-
strumental action preferences. As mentioned, we have recently
(Daw et al., 2005) studied competition in RL between multiple
subsystems for instrumental control — a more reflective, ‘goal-
directed’ controller and its ‘habitual’ counterpart; the present
work extends this approach to the interactions between instru-
mental (for simplicity, here represented by a single habitual
controller) and Pavlovian control. In Section 2, we show how
our model gives rise to negative automaintenance in an omis-
sion schedule, and in Section 3, we explore the richer and more
varied sorts of misbehavior that it produces in the context of a
navigational task. Finally, Ainslie (1992, 2001), and following
him Loewenstein and O’Donoghue (2004), consider the will as
the faculty that allows (human) subjects to keep their long-term
preferences from being derailed by short-term ones. We con-
sider how the will may curb Pavlovian misbehavior.

2. Negative automaintenance

Consider first the simplest case of instrumental conditioning
in which animals learn to execute action N (NOGO: withholding
a key peck) which leads to reward r = 1 rather than action
G (GO: pecking the key) which leads to reward r = 0. For
convenience, we consider aQ-learning scheme (Watkins, 1989)
in which subjects acquire three quantities (all at trial t):
1. v(t) the mean reward, learned as v(0) = 0, and

v(t + 1) = v(t) + η(r(t) − v(t)) (1)

where r(t) ∈ {0, 1} is the reward delivered on trial t , and η is
a learning rate. This is a simple instance of the Rescorla and
Wagner (1972) rule, which is actually just the same as would
be found in temporal difference learning (Sutton, 1988) in
this context;

2. qN(t) is the Q value of action N (i.e. the expected value of
performing action N), updated as qN(0) = 0 and

qN(t + 1) = qN(t) + η (r(t) − qN(t)) (2)

only if N was chosen on trial t .
3. qG(t) is the Q value of action G updated as qG(0) = 0 and

qG(t + 1) = qG(t) + η (r(t) − qG(t)) (3)

only if G was chosen on trial t .

The Q values as such determine the instrumental propensity
to perform each of the actions, with action a(t) ∈ {N, G}

chosen according to

p(a(t) = N) =
eµ(qN(t)−v(t))

eµ(qN(t)−v(t)) + eµ(qG(t)−v(t))
(4)

= σ (µ(qN(t) − qG(t))) (5)
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Fig. 1. Negative automaintenance. The figures show the consequences of a Pavlovian bias for an action (G) that leads to omission of reward. (A) The evolution
of the probability p(a(t) = N) over the course of learning for learning rate η = 0.2, competition parameter µ = 5 and Pavlovian reliability ω = 0.2 (‘o’) or
ω = 0.8 (‘x’). The greater the weight accorded to the Pavlovian action, the stronger the omission effect. The solid horizontal lines show the theoretical equilibrium
probabilities for the two values of ω. (B) Contour plot of the equilibrium values of the probability p(a = N) = v across µ and ω. The two values from (A) are
marked by their respective symbols. The diminution of instrumental performance engendered by the Pavlovian influence is apparent.
where σ(·) is the standard logistic sigmoid function and µ is
a parameter governing the steepness of the preference for the
higher-valued action. This softmax function (or Luce choice
rule, 1959) is just one of a number of possibilities for action
competition — but is widely adopted in RL contexts. If a(t) =

N is always followed by r(t) = 1 and a(t) = G by r(t) = 0,
then qN(t) → 1; qG(t) → 0, action N is ultimately chosen a
fraction pN = σ(µ) of the time and v(t) → pN = σ(µ). For
µ > 3, pN > 0.95 and so the correct choice is dominant.

Note that the action probabilities in Eq. (5) do not depend on
the state value v(t), since this same quantity is subtracted from
eachQ-value in Eq. (4). The terms qN(t)−v(t) and qG(t)−v(t)
in this equation are the advantages (Baird, 1993; Dayan &
Balleine, 2002) of actions N and G. Advantages are closely
associated with actor-critic control, and have also been directly
used to model the neural basis of instrumental conditioning
(O’Doherty et al., 2004).

We model the omission aspects of the schedule by
suggesting that one of the actions is labelled as being
the Pavlovian action. The advantage of this action is then
augmented by an amount that depends on the Pavlovian value
of the state v(t), thus potentially distorting the competition
with the instrumentally favored N. If the innate Pavlovian
action were N (withholding), then the learning of the Pavlovian
contingency (i.e. the predictive value of the state) would speed
the course of instrumental learning. Indeed, such synergy
between Pavlovian and instrumental goals is exactly why
autoshaping can hasten instrumental acquisition. However,
in the model of the negative automaintenance case, the
Pavlovian action is G (pecking, as in typical appetitive approach
behavior), which leads to competition between the Pavlovian
and instrumental propensities. From an RL viewpoint, the
choice between N and G is purely arbitrary, and is shaped by
the external reward contingencies; however, these actions are
not symmetric from a psychological (Pavlovian) viewpoint, and
this leads exactly to the omission issue.

We need to formalize the competition between Pavlovian
and instrumental actions. There are various ways to do this —
one simple version is to treat the Pavlovian impetus towards
G to be exactly the value v(t) (and the Pavlovian impetus to
N to be 0), and to consider weighting this Pavlovian factor
with the instrumental advantages qN(t)− v(t) and qG(t)− v(t)
for the two actions. More exactly, we weight the Pavlovian
impetus by ω, and the instrumental advantages by (1−ω) where
0 ≤ ω ≤ 1 acts as if it is the assumed competitive reliability of
the Pavlovian values (Dayan, Kakade, & Montague, 2000). We
discuss the aetiology of ω more fully later; first we consider the
consequences of choosing different values for it.

In sum, the propensities to perform each action are changed
to:

N: qN(t) − v(t) ⇒ (1 − ω)(qN(t) − v(t))

G: qG(t) − v(t) ⇒ (1 − ω)(qG(t) − v(t)) + ωv(t)
(6)

and action choice is performed as in Eq. (4), giving

p(a(t) = N) = σ(µ((1 − ω)(qN(t) − qG(t)) − ωv(t))). (7)

Fig. 1A shows the results of simulating this model, with
η = 0.1, µ = 5 and Pavlovian reliabilities ω = 0.2 (‘o’) and
ω = 0.8 (‘x’). The results show p(a(t) = N) on a trial-by-trial
basis. They start at p(a(t) = N) = 0.5 (as the propensities
to both actions are zero), and converge to final values, near
to 1 for ω = 0.2 and near to 0.4 for ω = 0.8 (thin solid
lines). This shows the basic effect of Pavlovian contingencies
on performance in the omission schedule — the propensity
to perform the appropriate action is greatly diminished by the
Pavlovian bias for the ‘wrong’ action.

If behavior stabilizes (which depends on the learning rate),
then v(t) → p(a(t) = N). We can therefore look for
equilibrium points of Eq. (7) as a function of µ and ω. Fig. 1B
shows these equilibrium values. Negative automaintenance
bites more strongly as ω increases (i.e. p(N) = v gets smaller),
an effect that is enhanced by increasing action competition. In
this formulation, for ω =

2
3 , it turns out that v =

1
2 , independent

of µ. This defines the central vertical contour of that plot. The
symbols ‘o’ and ‘x’ mark the locations explored through the
simulations in Fig. 1A.
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Fig. 2. Pavlovian and instrumental conditioning in a standard 8 × 12 maze with a fence. Both plots illustrate near-optimal stochastic policies taking a subject from
any place in the maze to one of two different goals, with the aim of maximizing γ T , where γ = 0.9 is a discount factor, and T is the number of steps. The policy
is determined by the softmax competition of the advantages defined by these values, with µ = 50 (since the values are very close to each other). Arrow length is
proportional to probability.
In sum, as a didactic example, we have shown one way
to incorporate paradoxical behavior on omission schedules
within RL, by manipulating the advantages of the actions.
The parameterization includes the weight ω, which determines
the relative importance of the instrumental and classical
contingencies. One might expect ω normally to be fairly high —
since the generalizations that underlie classical conditioning’s
choice of actions have presumably been honed by evolution,
and should thereby be accorded a high reliability. Thus a
suitable role for an overarching control process would be
to reduce ω, and thereby enable more proficient collection
of rewards in relevant circumstances. Alternatively, ω could
itself be subject to inference (perhaps according to modeled
uncertainties about the relative reliabilities of Pavlovian and
instrumental actions; Daw et al. (2005)).

3. Detours

Omission schedules, and indeed the interestingly florid
behaviors exhibited by Breland and Breland (1961)’s actors
or Hershberger’s (1986) chicks, concern relatively constrained
sets of actions. However, classical contingencies may exert a
rather more all-pervasive influence over other sorts of behavior,
warping choice according to the proximity of relatively
immediate goals and their near precursors. We would argue
that some of the many apparent illogicalities of choices, such
as those studied under the rubric of emotional contributions
to irrationality (e.g. Loewenstein and O’Donoghue (2004))
arise from this source. We come back to this point in the
discussion, focusing particularly on choice anomalies arising
from hyperbolic discounting that have been much studied
by Ainslie (1992, 2001), Laibson (1997) and Loewenstein
and Prelec (1992). In this section, we consider another
very simplified model of how Pavlovian choices can warp
instrumental responding, using navigation in a maze. We
discuss later the reasons why mazes may not be quite
the optimal model; however, we use them since the ready
interpretability of policies in mazes makes them excellent
didactic tools.

Fig. 2A illustrates a simple 8 × 12 grid maze (often used as
an example in previous RL papers Barto, Sutton, and Watkins
(1990)) with an ‘n’-shaped fence. The agent can move in the
four cardinal directions, except that if it attempts to cross the
fence or stray outside the maze, then it just stays where it is.
There is a goal just inside the fence, shown by the ‘+’ sign, for
instance, some food. If we consider the food as having a value
of 1 unit, then the arrows illustrate a near-optimal, probabilistic
policy for minimizing the number of steps to the food (or rather
maximising the temporally discounted return γ T

· 1 obtained,
where γ = 0.9 is a discount factor, and T is the number of
steps to the goal). The policy indicates which direction the
agent takes, with the lengths of the arrows proportional to their
probabilities. Formally, the probabilities come from the softmax
generalization of Eq. (4), with each action competing according
to its exponentiated advantage, where the Q-value defining
the advantage of an action again comes from estimates of the
expected values E[γ T

] based on starting by taking that action
(Watkins, 1989)).

To capture the misbehavior created by Pavlovian urges,
we consider an additional, Pavlovian secondary conditioning
goal, say a light previously associated with food. The light
is presented at a different location in the maze (shown by
the asterisk in Fig. 2B). In the same way that the key elicits
approach and pecking from the hapless pigeons, the light elicits
approach. For convenience (see later discussion), we use the
optimal approach policy shown in the figure (which is actually
created in the same way as the optimal policy for the true goal),
as the Pavlovian action propensities.
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Fig. 3. Pavlovian warping. As a function of the weight ω accorded to the Pavlovian goal (the asterisk), top and bottom plots show the stochastic policies (for
illustrative convenience, arrows are shown in the average direction at each point; in reality the agent stochastically chooses one single cardinal direction) and the
probabilistic event horizons of the Pavlovian goal (on a grayscale of 0–1). For small ω, the instrumental goal dominates; as ω gets larger, the Pavlovian goal exerts
a greater influence. Here µ = 40.
Consider the effect of turning on the light (the asterisk)
when the agent is moving (under instrumental control) to the
plus sign. This creates a Pavlovian imperative to approach the
light (for convenience, we assume this can be seen throughout
the maze), which then competes with the instrumental control,
and therefore warps the trajectories. We model this competition
using the parameter ω, just as in Eq. (7), except that four
actions compete rather than two, and the Pavlovian influence is
governed by the Pavlovian advantages for approach (generating
the approach policy shown in Fig. 2B). We use µ = 40, and
vary the reliability parameter ω as a way of titrating the control
exerted by Pavlovian actions.

The top row of Fig. 3 shows how the (net) instrumental
policy to the ‘+’ is warped by the illumination of the Pavlovian
goal as a function of parameter ω. For large ω, the whole policy
turns around, and moves the agent towards the Pavlovian goal
rather than the instrumental one. For intermediate ω, the effect
of the light on the path taken by the agent depends on its starting
point within the grid. One way to quantify the warping created
by the Pavlovian goal is the extent to which trajectories to
the ‘+’ get incorrectly captured by the ‘∗’. For a given pair
of goals, we can calculate the probability (averaging over the
stochastic choice of actions) that this will happen starting from
any location in the maze. This results in a form of probabilistic
‘event horizon’ around the Pavlovian goal which consists of
the starting locations from which the agent is likely to visit it
first. The bottom row of Fig. 3 shows these event horizons as
a function of ω. For large ω, only the Pavlovian goal has any
force, and it seduces the agent from almost anywhere in the
maze. Of course, one might expect that, having approached and
engaged with the light, the agent will then set a course for the
instrumental goal.

4. Discussion

In this paper, we have considered a simple, policy-
blending interaction between Pavlovian and instrumental
actions, using ideas from reinforcement learning to provide
a formal framework. Pavlovian actions (such as approach to
cues predicting rewards), which are presumably stamped in
by their evolutionary appropriateness, can sometimes interfere
negatively with instrumental goals, leading to poor control. This
is starkly evident in omission schedules, which are designed to
emphasize this competition. However, the navigational example
in Section 3 suggests a more pervasive class of problems
in which similar issues are important. We now consider
more general aspects of Pavlovian-instrumental interactions,
some areas in which our model is incomplete, and finally
relate our study to recent work (Daw et al., 2005) on
the computational structure of instrumental conditioning, and
thereby to competing explanations of the sub-optimalities that
we have considered.

4.1. Pavlovian–instrumental interactions

First, Pavlovian actions can certainly be synergistic with
instrumental actions rather than antagonistic (a fact that is
important in the debate about the independence of Pavlovian
and instrumental conditioning, see Mackintosh (1983)). Indeed,
in many experiments, Pavlovian actions are actively solicited,
for instance, to encourage subjects to engage with manipulanda.
Even in the maze task, if the light were placed near the
instrumental goal, then approach to the light could benefit
acquisition of the food. In cases such as these forms of
shaping, the dynamics of the interaction between Pavlovian
and instrumental actions are carefully managed; in some
subjects and procedures one can induce instabilities or even
oscillations (Williams & Williams, 1969) by injudicious or
unfortunate competition. We did not simulate either the positive
interactions or the dynamics here, or indeed the motivational
import of Pavlovian predictors evident in paradigms such
as Pavlovian–instrumental transfer or conditioned suppression
(see Dickinson and Balleine (2001)).

A synergistic interaction that is more critical for RL is
conditioned reinforcement (see Mackintosh (1974)). In this,
a stimulus that has a Pavlovian association with reward
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becomes a target for instrumental action. For instance, animals
can learn (instrumentally) to press a lever to illuminate
a light that has historically been paired with food, even
absent any food delivery during the instrumental training.
Conditioned reinforcement is the basic mechanism of action
learning for long-term goals in models such as the actor-critic
(Barto, Sutton, & Anderson, 1983). Conditioned reinforcement
suggests that in a task like the maze, the problem is not so
much that the two systems have different goals, in the sense of
attaching value to different world states or objects, but, rather,
that they direct different actions toward common goals, with
the instrumental system seeking to illuminate the light, and the
Pavlovian system to approach it (when illuminated). This is an
important distinction between our interpretation of such tasks
and the view of self-control theorists such as Loewenstein and
O’Donoghue (2004).

Pavlovian–instrumental interactions may also occur in
the aversive domain, although it has perhaps been less
easy to discern domain (Mowrer, 1947). One difficulty is
that, whereas appetitive unconditioned stimuli almost always
engage approach, aversive outcomes cause either withdrawal
or freezing or, in extreme circumstances, even approach
(e.g. fighting). In these circumstances, there is not a unitary
Pavlovian response that can be used to construct an omission
schedule. At the time that there was active examination
of the possibility that all Pavlovian responding was really
instrumental, or vice versa, there were some attempts to use
omission-like schedules in aversive cases (e.g. Bolles, Stokes,
and Younger (1966), Coleman (1975) and Kamin (1956). There
is also, for instance, a report that squirrel monkeys punished for
biting on a restraining leash tend to increase their biting (Morse,
Mead, & Kelleher, 1967). However, there appears not to be a
very wide range of aversive studies directly pitting Pavlovian
against instrumental choices.

4.2. Model lacunæ

To make the illustration concrete, we had to specify a
rather large number of factors about which there is presently
little data and also work in a rather simplified regime.
However, general aspects of the competition extend beyond
these particular choices. In particular, mazes and spatial
navigation tasks potentially involve very different learning
mechanisms from more arbitrary instrumental tasks (e.g. Foster,
Morris, and Dayan (2000) and O’Keefe and Nadel (1978).
Here, we interpret the maze as a relatively rich example of
a sequential decision problem, showing off the temporally
extended consequences of competition between Pavlovian and
instrumental systems. We also did not study learning in
the maze; but rather assumed prior knowledge of Pavlovian
and instrumental contingencies. The main issues for learning
would be the same as those illustrated by the negative
automaintenance example.

Further, we selected Pavlovian actions (to the light)
according to their advantages, which are themselves rather
instrumental. However, the idea is to blend two sets of action
preferences (i.e. policies), and the advantages are really just a
convenient way of specifying the more obvious geographical
controller of moving directly towards the light. The latter would
be similar to the advantages, except for the effect of the fence.
The impact of fences and the like were studied extensively by
Köhler (1925); Tolman (1948) and their followers. For instance,
dogs (though apparently not chimpanzees) faced with food on
the other side of a boomerang-shaped fence will run around
the fence and eat the food if they are released from the leash far
enough from the food, but when released close to the fence they
run towards the food and thus fail to reach it (Köhler, 1925).
This indeed suggests a powerful element of direct approach
coming from the Pavlovian system that does not even accord
with the structure of the maze (in this case, by being insensitive
to the fence). This is certainly an important area for further
experimental investigation (Foster, 2000).

Also, the use of a grid maze implies that there are many
actions that are equivalent for one of the two particular goals,
making it possible in some cases to choose actions that satisfy
both. However, it is apparent from Fig. 3 that the effects of
the two goals extend to actions that require opposite directions.
Equally, the relative magnitudes of Pavlovian and instrumental
advantages are rather arbitrary — here, the light and the goal
had the same nominal reinforcement magnitude. Motivational
manipulations of either or both goals would be particularly
interesting, because of a debate (Daw et al., 2005; Dayan &
Balleine, 2002; Dickinson & Balleine, 2001; Holland, 2004) as
to the extent to which Pavlovian values (and thus presumably
advantages) directly reflect motivational states, without the
need for learning.

4.3. Progressive anomalies, habitization and self-control

In many of the cases reported by Breland and Breland
(1961), behavioral anomalies arise progressively — with
subjects learning to be proficient at instrumental tasks before
innately specified actions take over. This is tantalizingly rem-
iniscent of the transfer of control of instrumental behavior
from outcome-value sensitive, goal-based, control to outcome-
value insensitive, habitual control. Importing into RL a rather
widespread view (Dickinson, 1985; Owen, 1997; Packard &
Knowlton, 2002), we have recently suggested (Daw et al., 2005)
that goal-directed action (associated with dorsolateral pre-
frontal cortex, dorsomedial thalamus, and various of their affer-
ents and efferents) arises from search in an explicit model of the
task and environment, whereas habitual action (associated with
the amygdala and the dorsolateral striatum) arises from cached
or stored versions of values, policies or advantages, with learn-
ing being determined by neuromodulators. In our theory, these
controllers compete based on their own estimates of their reli-
ability, with goal-directed control having an advantage early in
training (because it uses samples more statistically efficiently)
but later ceding it to habitual control (because of inaccuracies
arising from sources such as computational complexity).

If goal-directed control indeed arises from tree-search,
then the deleterious consequences of Pavlovian actions will
be explicit, and they may therefore be easier to eliminate.
The habitual system does not use an explicit model of
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the outcomes of actions, and so Pavlovian and instrumental
advantages would be on a common footing, and would directly
compete. Thus we may expect Pavlovian effects to be more
parasitic on habitual than goal-directed control. This would
explain why the Pavlovian effects arise with training, as goal
directed gives way to habitual control. This parasitism could
readily be tested, using behavioral neuroscience techniques
(such as lesions of infralimbic and prelimbic cortices or the
dorsal striatum; Balleine and Dickinson (1998), Coutureau and
Killcross (2003) and Killcross and Coutureau (2003)) that are
known to manipulate the relative contributions of goal-directed
and habitual control to behavior.

This interaction between Pavlovian actions, and goal-
directed and habitual instrumental behavior is a main difference
between our view and that of Loewenstein and O’Donoghue
(2004). They suggest that choices determined by deliberation
compete with choices determined affectively, and interpret
many self-control situations (such as when a subject must
forgo proffered food to achieve some other ends) accordingly.
Willpower can be expensively exerted by the deliberative
system to overwhelm affective choices, but its costs have to
be weighed against its benefits. In application to intertemporal
choice, they suggest that the deliberative system has both
long and short term goals, but the affective system only
has the latter (further reinforced by immediate proximity to
primal goals). In the particular case that the cost of future
willpower is ignored, distal outcomes turn out to be discounted
hyperbolically, suggesting an alternative explanation for at least
some of the extensive behavioral phenomena discussed by
Ainslie and others (e.g. Ainslie (1992, 2001), Laibson (1997)
and Loewenstein and Prelec (1992).

Relating Loewenstein and O’Donoghue (2004)’s suggestion
to ours, we suggest that the equivalent of their affective
and deliberative systems are our Pavlovian and instrumental
systems, respectively. However, Loewenstein & O’Donoghue’s
nomenclature elides the key subdivision (Daw et al., 2005)
in the instrumental system between habitual and goal-directed
control, only the latter of which might really be called
deliberative, and both of which have different sorts of
motivational or affective sensitivities. A somewhat deeper
interpretational difference is that our Pavlovian system does not
necessarily have different goals from our instrumental systems
(in fact, here we have accorded it just the same goals), but rather
that it has a somewhat rigid and impoverished set of actions
(largely approach or withdrawal ultimately consummated in
ingestion or removal) that it brings to bear on achieving those
goals. It is these actions that often give it an apparently myopic
character (though this need not always be so, as demonstrated
by the long-range event horizons in the maze of Fig. 3).

As Dickinson and Balleine (2001) have extensively
discussed, there are many subtleties to motivationally-sensitive
control in Pavlovian and instrumental systems, all of which can
affect the nature and outcome of the competition. In particular,
Pavlovian approach, based on motivationally inappropriate
goals (sustained by goal-independent values) can disrupt
instrumental actions. In an example like the maze, this could
have subjects interrupting their instrumentally determined
actions (say toward a cognitive goal such as work) on account
of being seduced by Pavlovian approach to a cream bun at a
bakery on the route. It could also have their whole choice of
route warped by the implicit imperative of getting close to the
bakery itself.

Due to these competing myopic actions, our model also
exhibits some of the inconsistent choices and short-termism
that Loewenstein and O’Donoghue (2004), and also Ainslie
(2001), identify in their models as being related to hyperbolic
discounting. However, we do not suggest that Pavlovian
actions are wholly responsible for all hyperbolic discounting
— distinctly non-exponential discounting functions are widely
found even in purely cognitive tasks (Cropper, Aydede, &
Portney, 1991; Myerson & Green, 1995), where there are no
apparent competing Pavlovian actions.

Finally, the degree to which Pavlovian responses are useful
(favouring high values of the parameter ω) may largely be
determined on an evolutionary timescale. However, to the
extent that this parameter is modifiable, we would expect it
to change as experience accumulates about the success of
Pavlovian responses in a particular environment, indeed, much
in the same way we have suggested (Daw et al., 2005) that
competition between goal-directed and habitual instrumental
responses rests on inferences about their relative accuracies.
As there, a great deal will turn on the tradeoff between the
computational simplicity of Pavlovian control and the danger of
suboptimal misbehavior. Whatever detailed principles actually
govern the competition, when simple Pavlovian (and in fact
also habitual control) lose out to more effortful, goal-directed
control, the result can be viewed as a sort of top-down quashing.
This, in turn, parallels the conception of Ainslie (2001) and
Loewenstein and O’Donoghue (2004) of ‘the will’ as the
faculty providing discipline (and favouring hard mental work)
in the face of ease and temptation.
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